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S3: Isolation patterns for species observed in sample of PA(OCOCF3;), and (S)--BuPyOX.

Table S1: Intensities of complexes S, 6 and 7 at varying potentials applied to the syringe
carrying the spray.

Voltage Normalized Intensities
5 6 7 Ratio (6/5)in % Ratio (7/5) in %
5 kv 4.4 4.0 17.0 91.5 383.7
2.5kVv 4.0 6.1 30.2 154.3 763.9
0 kv 2.3 5.8 22.1 256.2 969.6
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Scheme S1: Higher energy conformers of § and 15 lacking the Pd—Nyyigin. bond.
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Scheme S2: Mechanism for C—H palladation of neutral complex (PyOx)Pd(OCOCF3;), (13)
proceeding through outer-sphere (14TS) or inner-sphere (16TS) mechanisms, both of which
are much higher in energy than the cationic mechanism. Note: neutral complex 13 is 22.7

kcal/mol more stable than cationic complex 5 (in DCE).
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Scheme S3: Formation of hydroxide complexes cationic 6 and neutral 18.
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S4: CID of the arylpalladium cation 11.

S5: Arylpalladium intermediates generated from different arylboronic acids and their putative
structures. A. p-tolylphenylpalladium B. 4-chlorophenylpalladium C. 4-
benzyloxyphenylpalladium D. 4-iodophenylpalladium.



