A general enantioselective route to the chamigrene natural product family

David E. White, Ian C. Stewart, Brinton A. Seashore-Ludlow, Robert H. Grubbs,* and Brian M. Stoltz*

The Arnold and Mabel Beckman Laboratories of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA

Supplementary Data

Table of Contents

1. METHODS	2
2. COMPARISON OF SYNTHETIC AND PUBLISHED ¹ H NMR, ¹³ C NMR, IR, AND $[\alpha]_D$ DATA FOR THE PROPOSED STRUCTURE OF (+)-LAURENCENONE B ((+)-7)	2
3. COMPARISON OF SYNTHETIC AND PUBLISHED ¹ H NMR, ¹³ C NMR, IR, AND $[\alpha]_D$ DATA FOR (–)-LAURENCENONE C (8)	4
4. COMPARISON OF SYNTHETIC AND PUBLISHED ¹ H NMR, IR, AND $[\alpha]_D$ DATA FOR (-)- α -CHAMIGRENE (5)	5
5. COMPARISON OF SYNTHETIC AND PUBLISHED ¹ H NMR DATA FOR (+)-ELATOL (1)	6
6. NATURAL PRODUCT SPECTRA	7

1. Methods

¹H NMR spectra were recorded on a Varian Mercury 300 (at 300 MHz) or a Varian Inova 500 (at 500 MHz) instrument and are reported relative to the residual solvent peak (δ 7.26 for CDCl₃, 7.16 for C₆D₆, and δ 2.05 for acetone-*d*₆) or Me₄Si (δ 0.00) in the case of CCl₄. Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. ¹³C NMR spectra were recorded on a Varian Mercury 300 (at 75 MHz), or a Varian Inova 500 (at 126 MHz) instrument and are reported relative the residual solvent peak (δ 77.0 for CDCl₃ and 128.06 for C₆D₆). Data for ¹³C NMR spectra are reported in terms of chemical shift (δ ppm), as well as multiplicity and coupling constant (Hz) where applicable. ¹⁹F NMR spectra were recorded on a Varian Inova 500 (at 470 MHz) instrument and are reported in terms of chemical shift (δ ppm) without the use of a reference peak. IR spectra were recorded on a Perkin Elmer Spectrum BXII spectrometer and are reported in frequency of absorption (cm⁻¹). Optical rotations were measured with a Jasco P-1010 polarimeter, using a 100 mm path-length cell.

2. Comparison of synthetic and published ¹H NMR, ¹³C NMR, IR, and $[\alpha]_D$ data for the proposed structure of (+)-laurencenone B ((+)-7)

Synthetic	
¹ H NMR (500 MHz, acetone- d_6)	¹ <i>H</i> NMR (60, 250, or 360 MHz, acetone- d_6)
(δ)	(δ)
5.80 (s, 1H)	5.90 (br s, 1H)
2.52–2.69 (br m, 2H)	2.70 (d, <i>J</i> = 18 Hz, 1H)
2.31 (dd, <i>J</i> = 0.98, 18.1 Hz, 1H)	1.6–2.3 (m, 6H)
2.19-2.27 (br m, 1H)	
2.02–2.16 (br m, 1H)	2.10 (d, <i>J</i> = 18 Hz, 1H)
1.88–2.02 (m, 2H)	
1.98 (d, J = 1.2 Hz, 3H)	1.98 (d, J = 2 Hz, 3H)
1.76–1.88 (br m, 1H)	
1.80 (br s, 3H)	1.75 (br d, $J = \sim 4$ Hz, 3H)
1.09 (s, 3H)	1.03 (s, 3H)
0.96 (s, 3H)	0.98 (s, 3H)
IR	IR

^{1.} Kennedy, D. J.; Selby, I. A.; Thomson, R. H. Phytochemistry 1988, 27, 1761-1766.

$(cm^{-1}, selected values)$	(cm^{-1})
1667	1670
Synthetic	Semisynthetic ²
¹ H NMR (500 MHz, CDCl ₃)	¹ H NMR (250 MHz, CDCl ₃)
(δ)	(δ)
5.89 (s, 1H)	5.89 (br s, 1H)
2.50–2.69 (br m, 2H)	2.59 (AB m, 2H)
2.26 (br d, <i>J</i> = 18.3 Hz, 1H)	1.6–2.3 (m, 6H)
2.13–2.23 (br m, 1H)	
1.99–2.14 (br m, 2H)	
1.98 (d, J = 0.98 Hz, 3H)	1.98 (d, J = 0.9 Hz, 3H)
1.93 (ddd, <i>J</i> = 5.4, 12.3, 12.3, Hz, 1H)	
1.81 (br s, 3H)	1.81 (s, 3H)
1.72–1.80 (m, 1H)	
1.06 (s, 3H)	1.07 (s, 3H)
0.97(s, 3H)	0.97 (s, 3H)
$^{13}C NMR (126 MHz, CDCl_3)$	$^{13}C NMR (CDCl_3)$
(δ)	(δ)
198.2	198.04
168.6	168.38
129.6	129.64
127.5	127.54
126.2 (br)	126.23
48.8	48.90
46.3	46.38
40.4	40.45
36.3	36.33
30.4 (br)	30.37
30.1	30.22
24.8	24.80
23.9 (two overlapping CH_3 peaks)	23.89
	23.81
19.7	19.69
IR	IR
(cm ⁻¹ , selected values)	(cm^{-1})
3025	3000
2963	2950
2933	2900
2911 (shoulder)	
2880 (shoulder)	

^{2.} Brennan, M. R.; Erickson, K. L; Minott, D. A.; Pascoe, K. O. Phytochemistry 1987, 26, 1053–1057.

2855	2850
1667	1660
1612	1610
$[\alpha]^{24}_{D}$	$[\alpha]^{25}_{D}$
$+47.08^{\circ}$ (<i>c</i> = 0.36, CHCl ₃)	$+58.3^{\circ}$ (<i>c</i> = 0.36, CHCl ₃)

3. Comparison of synthetic and published ¹H NMR, ¹³C NMR, IR, and $[\alpha]_D$ data for (–)-laurencenone C (8)

Synthetic	Natural (original isolation) ¹
¹ H NMR (500 MHz, acetone- d_6)	$^{1}HNMR$ (60, 250, or 360 MHz, acetone- d_{6})
(δ)	(δ)
5.76 (br s, 1H)	5.95 (br s, 1H)
5.49–5.55 (br m, 1H)	5.62 (br s, 1H)
2.46–2.73 (br m, 1H)	2.75 (d, J = 18 Hz, 1H)
2.21–2.31 (br m, 1H)	2.2 (d, J = 18 Hz, 1H)
1.74–2.12 (br m, 6H)	1.6–2.3 (m, 6H)
1.97 (d, <i>J</i> = 1.5 Hz, 3H)	1.99 (d, J = 2 Hz, 3H)
1.65–1.69 (br m, 3H)	1.76 (br d, $J = \sim 4$ Hz, 3H)
1.03 (s, 3H)	1.03 (s, 3H)
0.93 (s, 3H)	0.97 (s, 3H)
IR	IR
(cm ⁻¹ , selected values)	(cm^{-1})
1667	1670

Synthetic	Natural (second isolation) ³
¹ H NMR (500 MHz, CDCl ₃)	¹ $H NMR (400 MHz, CDCl_3)$
$(\delta, selected values)$	(δ)
5.87 (br s, 1H)	5.87 (s, 1H)
5.47–5.53 (br m, 1H)	5.50 (m, 1H)
1.97 (d, J = 1.5 Hz, 3H)	1.98 (s, 3H)
1.68 (br s, 3H)	1.68 (s, 3H)
1.03 (s, 3H)	1.03 (s, 3H)
0.95 (s, 3H)	0.95 (s, 3H)

^{3.} Asakawa, Y.; Tori, M.; Masuya, T.; Frahm, J.-P. Phytochemistry 1990, 29, 1577–1584.

^{13}C NMR (126 MHz, CDCl ₃)	¹³ C NMR (22.5 or 100 MHz, CDCl ₃)
(δ)	(δ)
198.6	198.5
170.4	170.3
134.1	131.4
127.0	127.0
121.6	121.6
48.9	49.0
43.4	43.4
40.4	40.4
30.6 (br)	30.6
28.2	28.2
27.9	28.0
24.8	24.8
24.2	24.2
23.9 (br)	23.4
23.3	23.3
IR	IR
$(cm^{-1}, selected values)$	(cm^{-1})
1667	1660
1610	1610
$[\alpha]^{26}_{D}$	[α] _D
-87.98° (<i>c</i> 1.00, CHCl ₃)	-43° (<i>c</i> 1.0, CHCl ₃)

4. Comparison of synthetic and published ¹H NMR, IR, and $[\alpha]_D$ data for (–)- α -chamigrene (5)

Synthetic	Natural ⁴
¹ H NMR (300 MHz, CCl ₄)	$^{1}HNMR(CCl_{4})$
$(\delta, selected values)$	(δ)
5.36–5.43 (m, 1H)	5.3 (unresolved m, 2H)
5.23–5.29 (m, 1H)	
1.60–1.65 (m, part of a 14H m (1.55–2.02))	1.63 (br s, 6H)

^{4.} Ohta, Y.; Hirose, Y. Tetrahedron Lett. 1968, 9, 2483–2485.

0.89 (s, 3H)	0.89 (s, 3H)
0.82 (s, 3H)	0.84 (s, 3H)
IR	IR
$(cm^{-1}, selected values)$	(cm ⁻¹)
1655	1655
832	830
810	810
800	800
760	760
$\left[\alpha\right]_{D}^{26}$	[α] _D
-64.60° (<i>c</i> 0.21, CHCl ₃)	-14.5° (<i>c</i> 0.21, CHCl ₃)

5. Comparison of synthetic and published ¹H NMR data for (+)-elatol (1)

Synthetic	Natural ⁵
¹ H NMR (500 MHz, CDCl ₃)	¹ H NMR (100 MHz, CDCl ₃)
(selected values)	(published values from original isolation)
(δ)	(δ)
5.13 (s, 1H)	5.12 (s, 1H)
4.80 (s, 1H)	4.80 (s, 1H)
4.61 (d, J = 2.9 Hz, 1H)	4.60 (d, J = 3 Hz, 1H)
4.13–4.17 (m, 1H)	4.16 (m, 1H)
1.70 (br s, 3H)	1.70 (m, 3H)
1.08 (s, 3H)	1.10 (s, 6H)
1.07 (s, 3H)	

^{5.} Sims, J. J.; Lin, G. H. Y.; Wing, R. M. Tetrahedron Lett. 1974, 15, 3487–3490.

Figure S.3 Infrared spectrum (neat film/NaCl) of synthetic (+)-laurencenone B ((+)-7).

Figure S.4 ¹³C NMR (126 MHz, CDCl₃) of synthetic (+)-laurencenone B ((+)-7).

Figure S.7 Infrared spectrum (neat film/NaCl) of synthetic (-)-laurencenone C (8).

Figure S.8 ¹³C NMR (126 MHz, CDCl₃) of synthetic (–)-laurencenone C (8).

Figure S.11 Infrared spectrum (neat film/NaCl) of synthetic (–)- α -chamigrene (5).

Figure S.12 ¹³C NMR (126 MHz, CDCl₃) of synthetic (–)- α -chamigrene (**5**).

Figure S.13 ¹H NMR (500 MHz, CDCl₃) of synthetic (+)-elatol (1).

Figure S.14 Infrared spectrum (neat film/NaCl) of synthetic (+)-elatol (1).

Figure S.15 13 C NMR (126 MHz, CDCl₃) of synthetic (+)-elatol (1).

Figure S.16 ¹H NMR (500 MHz, CDCl₃) of a natural sample of (+)-elatol (1).

