Accepted Manuscript

Confirmation of the absolute configuration of (–)-aurantioclavine

Douglas C. Behenna, Shyam Krishnan, Brian M. Stoltz

PII: S0040-4039(10)02084-8
DOI: 10.1016/j.tetlet.2010.11.074
Reference: TETL 38738

To appear in: Tetrahedron Letters

Received Date: 4 October 2010
Revised Date: 11 November 2010
Accepted Date: 14 November 2010

Please cite this article as: Behenna, D.C., Krishnan, S., Stoltz, B.M., Confirmation of the absolute configuration of (–)-aurantioclavine, Tetrahedron Letters (2010), doi: 10.1016/j.tetlet.2010.11.074

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Graphical Abstract
To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Confirmation of the absolute configuration of (−)-aurantioclavine
Douglas C. Behenna, Shyam Krishnan, and Brian M. Stoltz*

Leave this area blank for abstract info.

(−)-Aurantioclavine (1)
Confirmation of the absolute configuration of (−)-aurantioclavine

Douglas C. Behenna, Shyam Krishnan, and Brian M. Stoltz*

*California Institute of Technology, Division of Chemistry and Chemical Engineering, Mail code 101-20, Pasadena CA 91125, USA

Abstract

We confirm our previous assignment of the absolute configuration of (−)-aurantioclavine as 7R by crystallographically characterizing an advanced 3-bromoindole intermediate reported in our previous synthesis. This analysis also provides additional support for our model of enantioinduction in the palladium(II)-catalyzed oxidative kinetic resolution of secondary alcohols. 2009 Elsevier Ltd. All rights reserved.

Keywords:
Aurantioclavine
Absolute configuration
Oxidative kinetic resolution
Indole alkaloid
Azepinoindole

As part of a research program in oxidative catalysis, we have developed a palladium(II)-catalyzed oxidative kinetic resolution (OKR) of secondary alcohols.1 To demonstrate the utility of this methodology, we have carried out several natural product syntheses that rely on OKR to induce asymmetry.2 Specifically, we completed the first enantioselective synthesis of (−)-aurantioclavine (1), which allowed the assignment of the absolute configuration of the natural product as 7R (Scheme 1).2a

aurantioclavine was a focal point of our interest in the calycanthaceous alkaloids (e.g., communesin A (2))3 and allowed us to demonstrate the utility of the enantioenriched secondary alcohols produced from our OKR reaction as precursors to enantioenriched amines. However, a recent personal communication from Professor Jia called into question our stereochemical assignment.4 This coupled with our recent experience with an attempted Sn2 reaction that proceeded with retention of configuration5 prompted us to reinvestigate our assignment.

Our synthesis of the ergot natural product (−)-aurantioclavine (1) employed an OKR of racemic diol 3, which produced enantioenriched diol (−)-3 and ketone 4 (Scheme 2). Incorporation of the required nitrogen atom was achieved by treating diol (−)-3 with hydrazoic acid under low temperature Mitsunobu conditions to give the displacement product, azide 5, which was expected to be of inverted configuration. A sequence of azide reduction, nosyl protection, and bromination provided bromoindole 7. Elaboration of the indole 3-position and dehydration provided alcohol 9, which underwent smooth cyclization to form indoleazepine 10.6 Deprotection of bis-sulfonamide 10 afforded (−)-aurantioclavine, which matched the optical rotation of the natural material in both sign and magnitude.7

Scheme 1. Alkaloid natural products of interest.

It should be noted that the assignment of the absolute configuration of diol (−)-3 in our previous paper was based entirely on the extrapolation of our model for enantioinduction in the OKR reaction and our extensive experience with such secondary benzylic alcohol substrates.8 No definitive proof of the absolute configuration of diol (−)-3 was obtained at that time. While this was a reasonable course of action given the complete agreement between the experimental data from other substrates of known absolute configuration and our model, we chose to reexamine the route.

* Corresponding author. Tel.: +1-626-395-6064; fax: +1-626-395-8436; e-mail: stoltz@caltech.edu
Scheme 2. Synthesis of \((-\)-)aurantioclavine.

In scrutinizing our synthesis, we judged that the two most probable, albeit unlikely, opportunities for an unanticipated stereochemical outcome were the OKR and Mitsunobu steps (Scheme 3). In one scenario (path A), alcohol 3 might act as an anomalous substrate, such that under the OKR conditions the \((S)\)-enantiomer is oxidized more rapidly. Alternatively, we considered the possibility that during the Mitsunobu reaction the pendant tertiary alcohol could displace an activated intermediate to form oxetane 12, which could be opened by the azide nucleophile and give the product with an overall retention of configuration (path B).\(^1\)\(^2\) While it seemed possible, a priori, that later steps in the synthesis might erode the enantiomeric excess of advanced intermediates, no step subsequent to the azide displacement appeared capable of completely inverting the stereocenter.

Scheme 3. Potential pathways for unanticipated stereochemical outcomes in the functionalization of diol 3.

Figure 1. ORTEP representation of compound 7.
In order to address these possibilities, we initiated efforts to obtain definitive evidence regarding the absolute configuration generated by our synthesis. Fortunately, intermediate bromide 7 proved to be crystalline and provided crystals of sufficient quality for single crystal X-ray diffraction studies. Calculation of the Flack parameter10 clearly indicated that the absolute stereochemistry of the C(7) stereocenter is R (Figure 1).

This structural data reaffirms our assertion that the natural product ($-$)-aurantioclavine (1) is of the (7R)-configuration, and provides further support for our model of asymmetric induction in the OKR reaction.

Acknowledgments

This publication is based on work supported by Award No. KUS-11-006-02, made by King Abdullah University of Science and Technology (KAUST). Financial support from Caltech, Amgen, and the California TRDRP (postdoctoral fellowship to SK) is also gratefully acknowledged. The Bruker KAPPA APEXII X-ray diffractometer used in this study was purchased via an NSF CRIF:MU award to Caltech, CHE-0639094.

References and notes

Supplementary Material

Crystallographic data for compound 7 can be obtained from this journal or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK by quoting the deposition number (772069).