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Highly substituted cyclopentanes are a common structural
motif integrated into thousands of natural products.[1]

Selected examples of bioactive compounds containing this
basic structural unit include the hamigerans (2),[2a] steroids
(3),[2b] pleuromutilin antibiotics (4),[2c] cyathane diterpenoids
(5),[2d] cyclic botryococcenes (6),[2e] and anti-HBV schisanwil-
sonenes (7a–c)[2f] (Figure 1). Synthetic methods for the
asymmetric preparation of cyclopentanoid cores with multi-
ple functional group handles are highly desirable because
they allow for the strategic synthesis of these and other
natural products.[3] Toward this goal, we envisioned that
functionalized chiral units such as acylcyclopentene 1 could
serve as valuable synthetic intermediates (Figure 1). Here, we
describe a general and enantioselective preparation of
versatile chiral acylcyclopentenes[4,5] that combines a catalytic
asymmetric alkylation reaction[6] and a facile two-carbon ring
contraction.

Our work in this area began with observation of the
unusual reactivity of seven-membered ring vinylogous esters
compared to their six-membered ring counterparts. Although

LiAlH4 reduction of vinylogous ester 8 gave expected enone
9[7] as the major product after acidic workup (Scheme 1A),
subjecting the analogous seven-membered ring vinylogous
ester (10 a) to identical reaction conditions led to cyclo-
heptenone 11 a as only a minor product (Scheme 1B).
Interestingly, the major product was identified as stable b-
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Figure 1. Representative natural products possessing cyclopentanoid
core structures with quaternary stereocenters.

Scheme 1. Anomalous reactivity of seven-membered ring vinylogous
esters and discovery of a ring-contraction reaction.
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hydroxyketone 12a.[8] The lack of appreciable b-elimination
even under acidic conditions suggests that subtle, but
fundamental differences in ring conformational preferences
between six- and seven-membered rings may lead to the
strikingly different product distributions.[9]

To further examine the inherent reactivity of b-hydroxy-
ketone 12a, we exposed the compound to a variety of basic
reaction conditions. Treatment of b-hydroxyketone 12 a with
LiOtBu in tBuOH afforded acylcyclopentene 1a in 53% yield
without any evidence of direct b-hydroxy elimination to
enone 11a (Scheme 1). Overall, the reaction constitutes a
two-carbon ring contraction that likely proceeds through a
retro-aldol fragmentation/aldol cyclization pathway.
Although some examples of the preparation of acylcyclopen-
tenes from seven-membered rings[10] are known, general ring-
contraction methods have not been demonstrated with g-
quaternary stereocenters and catalytic asymmetric routes are
unprecedented.

Enticed by this initial finding, we investigated the effect of
different bases on product formation (Table 1). Alcohol
additives in combination with LiOH in THF improved the

yield for the reaction (Table 1, entries 2–4), with
CF3CH2OH[11] enabling the production of 1a in 96%
yield.[12] It is interesting to note that enone 11a was not
observed under any of the surveyed conditions. Among the
conditions that promote the desired ring contraction, the
combination of LiOH and CF3CH2OH in THF offered a mild,
efficient, and selective method for further studies (Table 1,
entry 4).

With an optimized procedure for the ring contraction, we
turned our attention to the asymmetric synthesis of various
quaternary a-substituted vinylogous esters (e.g., 10,
Table 2).[13, 14] A number of racemic b-ketoester substrates
(e.g., 14) for catalytic enantioselective alkylation could be
obtained by acylation of parent vinylogous ester 13 with allyl
cyanoformate[15] and trapping with a range of electrophiles
under basic conditions.[16] Application of our standard enan-
tioselective decarboxylative alkylation reaction condi-
tions[6, 13] to substrate 14 a produced chiral vinylogous ester

10a in 91% yield and 88% ee (Table 2, entry 1).[17, 18]

Substituents such as ethyl, benzyl, propargyl, homoallyl, and
2,4-pentadienyl groups were well tolerated in the reaction,
giving similarly high yields and enantioselectivity (Table 2,
entries 2–6). A number of heteroatom-containing substrates
were explored to test if more diverse functionality could be
incorporated into our target acylcyclopentenes (Table 2,
entries 7–11). b-Ketoesters bearing a 2-chloroallyl substitu-
tent readily underwent the enantioselective alkylation reac-
tion (Table 2, entry 7). Gratifyingly, compounds that possess
Lewis basic moieties readily furnished the desired products
without complications (Table 2, entries 8 and 9). Even indoles
and free aldehydes could be incorporated into the cyclo-
heptenone products (Table 2, entries 10 and 11).

The chiral vinylogous esters (e.g., 10) prepared above
allowed us to examine the scope of the ring-contraction
reaction (Table 3). Substrate reduction with LiAlH4 and base-
promoted rearrangement of vinylogous esters bearing g-alkyl
substituents provided access to the corresponding acylcyclo-
pentenes in excellent yields over the two-step protocol

Table 1: Ring-contraction optimization.[a]

Entry Base Additive Solvent T [8C] Yield [%][b]

1 LiOtBu none tBuOH 40 71 (53)[c]

2 LiOH tBuOH THF 60 78
3 LiOH HFIP[d] THF 60 87
4 LiOH CF3CH2OH THF 60 96 (84)[c]

[a] Conditions: b-hydroxyketone (1.0 equiv), base (1.5 equiv), additive
(1.5 equiv) in solvent (0.1m) at indicated temperature for 9–24 h. [b] GC
yield using an internal standard. [c] Yield of isolated products in
parentheses. [d] HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol. THF = tetra-
hydrofuran.

Table 2: Scope of the Pd-catalyzed enantioselective alkylation of cyclic
vinylogous esters.[a]

Entry Substrate
14

R Product
10

Yield
[%][b]

ee
[%][c]

1 14a CH3 10a 91 88
2 14b CH2CH3 10b 89 92
3 14c CH2Ph 10c 98 86
4 14d CH2C�CH 10d 88 89
5 14e CH2CH2CH=CH2 10e 95 87

6 14 f 10 f 90 90

7 14g 10g 99 86

8 14h CH2CH2CN 10h 96 87

9 14 i 10 i 97 85

10 14 j 10 j 98 83

11 14k 10k 90 80

[a] Conditions: b-ketoester (1.0 equiv), [Pd2(pmdba)3] (2.5 mol%), (S)-
tBu-PHOX (6.25 mol%) in PhCH3 (0.1m) at 30 8C; pmdba=4,4’-
methoxydibenzylideneacetone. [b] Yield of isolated products. [c] Deter-
mined by HPLC or SFC analysis using a chiral column. LDA = lithium
diisopropylamide, Ts = 4-toluenesulfonyl.
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(Table 3, entries 1–6). The chloroallyl-, nitrile-, and indole-
containing substrates could be transformed with similarly
high yields using the same conditions (Table 3, entries 7, 8,
and 10). Alternatively, DIBAL allowed smooth conversion of
vinylogous ester 10 i containing an N-basic pyridine (Table 3,
entry 9). Milder reductions under Luche conditions enabled
facile conversion of silyl ether substrates (Table 3, entries 11
and 12).[19] Furthermore, trans-propenyl substituted (Table 3,
entry 13) and spirocyclic substrates (Table 3, entry 14) per-

formed well in the ring-contraction chemistry. With the
combination of asymmetric alkylation and ring contraction,
we achieved a route to substituted acylcyclopentenes with a
wide range of functionality at the g-quaternary stereocenter.

To demonstrate the practicality and scalability of the
method, the a-methyl b-ketoester 14a was converted to the
corresponding acylcyclopentene 1a in 69% yield over three
steps on 15 g scale (Scheme 2A).[16] Notably, the multigram

protocol proceeds with reduced catalyst loading and at higher
reaction concentrations for the asymmetric alkylation step.
Additionally, the enantiopurity of the acylcyclopentene 1a
can be increased to 98 % ee by recrystallization of semi-
carbazone 15 (Scheme 2B).[16] Hydrolysis of semicarbazone
15 with aqueous HCl enabled facile recovery of 1 a. Further
derivatization afforded X-ray quality crystals of 16 for
verification of absolute configuration.[20] To enable access to
b-substituted acylcyclopentenes, addition of nBuMgBr to 10 a
resulted in formation of tertiary b-hydroxyketone 17 (Sche-
me 2C).[16] Application of modified ring-contraction condi-
tions allowed access to acylcyclopentene 18.

Table 3: Ring-contraction substrate scope.

Entry Substrate
10

R1 R2 Product
1

Overall
Yield
[%][e]

1[a,d] 10a CH3 CH2CH=CH2 1a 84
2[a,d] 10b CH2CH3 CH2CH=CH2 1b 90
3[a,d] 10c CH2Ph CH2CH=CH2 1c 86
4[a,d] 10d CH2C�CH CH2CH=CH2 1d 95
5[a,d] 10e CH2CH2CH=CH2 CH2CH=CH2 1e 87

6[a,d] 10 f CH2CH=CH2 1 f 91

7[a,d] 10g CH2CH=CH2 1g 92

8[a,d] 10h CH2CH2CN CH2CH=CH2 1h 85

9[b,d] 10 i CH2CH=CH2 1 i 80

10[a,d] 10 j CH2CH=CH2 1 j 87

11[c,d,f ] 10 l CH2OTBDPS CH2CH=CH2 1 l 91
12[c,d,g] 10m (CH2)3OTBDPS CH2CH=CH2 1m 85

13[a,d,h] 81

14[a,d,g] 87

[a] Reduction conditions A: vinylogous ester (1.0 equiv), LiAlH4

(0.55 equiv) in Et2O (0.2m) at 0 8C, then 10 % aqueous HCl quench.
[b] Reduction conditions B: 1) vinylogous ester (1.0 equiv), DIBAL
(1.2 equiv) in PHCH3 (0.03m) at �78 8C; 2) oxalic acid·2H2O in
MeOH (0.02m). [c] Reduction conditions C: vinylogous ester
(1.0 equiv), CeCl3·7H2O (1.0 equiv), NaBH4 (3.0 equiv) in MeOH
(0.02m) at 0 8C, then 10% aqueous HCl in Et2O at 0 8C. [d] Ring-
contraction conditions: b-hydroxyketone (1.0 equiv), CF3CH2OH
(1.5 equiv), LiOH (1.5 equiv) in THF (0.1m) at 60 8C. [e] Yield of isolated
products over 2–3 steps. [f ] See the Supporting Information for
experimental procedures for substrate synthesis. [g] Prepared from
14k. See the Supporting Information. [h] Prepared from 14a. See the
Supporting Information. DIBAL= diisobutylaluminum hydride, TBDPS=
tert-butyldiphenylsilyl.

Scheme 2. Multigram ring contraction, enrichment of ee values by
recrystallization, and organometallic modified ring-contraction
sequence. Color code for ORTEP plot of structure 16 in (B): green I,
blue N, red O, gray C. TFE = 2,2,2-trifluoroethanol.
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With a versatile, enantioselective synthesis of g-quater-
nary acylcyclopentenes 1 in hand, we sought to demonstrate
the further synthetic utility of these compounds. By combin-
ing site-selective manipulations in short reaction sequences
(1–4 steps), any of five reactive handles present in acylcyclo-
pentene 1 can be functionalized (Scheme 3, sites A–E).

Through careful implementation of these transformations,
diverse monocarbocyclic (1j, 18–23), spirocyclic (24 and 25),
and fused polycyclic structures (26 and 27) can be obtained.[16]

In summary, we have developed a catalytic enantioselec-
tive synthesis for the preparation of densely functionalized
chiral acylcyclopentenes in excellent yields and enantioselec-
tivities. The protocol exploits a highly efficient Pd-catalyzed
asymmetric alkylation reaction and a newly developed, mild
two-carbon ring contraction. The important chiral building
blocks formed using this method can undergo a variety of
synthetic transformations and will serve as valuable inter-
mediates for the total synthesis of natural products. Efforts
directed toward these ends are currently underway and will be
reported in due course.
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Ring-Contraction Strategy for the
Practical, Scalable, Catalytic Asymmetric
Synthesis of Versatile g-Quaternary
Acylcyclopentenes

Contraction action! A simple protocol for
the catalytic asymmetric synthesis of
highly functionalized g-quaternary acylcy-
clopentenes (see schematic) in up to
91% overall yield and 92% ee has been
developed. The reaction sequence

employs a palladium-catalyzed enantio-
selective alkylation reaction and exploits
the unusual stability of b-hydroxy cyclo-
heptanones to achieve a general and
robust method for performing two-
carbon ring contractions.
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