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ABSTRACT

A catalytic enantioselective double allylic alkylation reaction has been employed in the synthesis of the core of the gagunin diterpenoids.
Enantioenriched material was advanced in 11 steps to afford the core of the highly oxygenated target, which includes two all-carbon quaternary
stereocenters.

The gagunin family of diterpenoids (1�7, Figure 1) were
isolated from the spongePhorbas sp. off the coast of South
Korea by Shin and co-workers.1 A wide range of cytotoxi-
city (LC50 = 0.03�50 μg/mL) was reported for gagunins
A�G against the human leukemia cell line K562. The
cytotoxicity of the gagunins is modulated by the differen-
tial hydroxylation or esterification level present in a spe-
cific gagunin, as Shin and co-workers foundgaguninsA (1)
andB (2) to be less active thanother familymembers, likely
due to the presence of a butyrate group at C(11) of these
molecules.1 Additionally, a perhydroxylated derivative of
gaguninA (8) exhibited no cytotoxicity, further suggesting
the importance of substitution patterns. Gagunin E (5)
displayed an LC50 value of 0.03 μg/mL (50 nM), the most
potent cytotoxicity within this family of natural prod-
ucts. In the course of a reisolation of the gagunins from

Phorbas sp., gagunin E was not found despite the reisola-
tion of all other known gagunins and the discovery of 10
new gagunins.1b Given the scarcity of gagunin E in nature
and broad range of biological activity displayed by the
gagunin family, we sought to pursue a general synthetic
route toward the gagunins to allow for additional biologi-
cal profiling and structure�activity relationship studies.
Herein we report our progress toward a synthesis of the
carbocyclic core of the gagunin family.
The carbon skeleton of the gagunins resembles the

carbon skeleton of the cyathane family of diterpenoids.2

A general route toward the cyathanes was previously
reportedbyour laboratoryusingour enantioselectiveTsuji
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allylationmethodology.3 Bis-β-ketoester 9, comprised of a
mixture of racemic and meso diastereomers, was treated
with a catalytic amount of Pd2(pmdba)3 and the ligand
(S)-t-Bu-PHOX (10)4 to forge two all-carbon quaternary
stereocenters in a single operation, affording diketone 11 in
99% ee as a 4.4:1 mixture of (R,R) to meso-diastereomers
(Scheme 1).Diketone11was converted to enol triflate 12, a
common intermediate used in the syntheses of cyanthiwi-
gins F (13),5 B (14),5b and G (15).5b

Our retrosynthetic analysis of gagunin E (5) is shown
in Scheme 2. We planned to employ a similar overall
strategy in our approach to the gagunins, as was used in
the cyanthiwigins. Retrosynthetically, we envisionsed a

late-stage installation of the five-membered ring, preceded
by establishing the seven-membered ring through a ring-
closing methathesis (RCM) reaction. Such an approach
would again allow for the early and essentially simulta-
neous introduction of both quaternary stereocenters.
In the forward direction, enol triflate 12was subjected to

conditions reported byMulzer and co-workers to effect an
intermolecular Heck reaction at the hindered neopentyl
enol triflate.6 The addition of silyl ketene acetal 17,7

Pd(PPh3)4, andLiOAc affordedmethyl ester 18 in 77%yield

Scheme 1. Enantioselective Tsuji Allylic Alkylation Applied to
the Synthesis of Cyanthiwigins F (13), B (14), and G (15)

Scheme 2. Retrosynthesis of Gagunin E (5)

Figure 1. GaguninsA�G(1�7) and perhydroxylated gaguninA
(8) and their reported biological activities.
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(Scheme 3).8 Next, ketone 18 was converted to the corre-
sponding ketal (19) in 47% yield by treatment with
ethylene glycol and catalytic p-toluenesulfonic acid in
benzene at reflux. Methyl ester 19 was then exposed to
N,O-dimethylhydroxylamine hydrochloride and isopro-
pylmagnesium chloride to afford Weinreb amide 20 in
93% yield. The addition of vinylmagnesium bromide to
amide 20 at �20 �C furnished enone 21 in 74% yield.

Enone 21 was treated with Hoveyda�Grubbs genera-
tion 2 catalyst 229 in benzene at 40 �C to afford RCM
adduct 23 in 85% yield (Scheme 4). The enone of 23 was
next functionalized to the corresponding enol carbonate
(24) in 93% yield after treatment with LHMDS followed
by the addition ofmethyl chloroformate.A selectiveWacker
oxidation was performed on the terminal allyl group of
tetraene 24, giving methyl ketone 25 in 61% yield.10

Further purification by HPLC allowed 25 to be isolated
as a single diastereomer. Previously, the separation of such
diastereomers was accomplished only after closure of the

final ring.5Ketone 25was next diazotized usingDanheiser’s
diazo transfer conditions11 to afford 26 in 47% yield over
two steps.

With diazoketone 26 in hand, we proceeded to form
the final carbocycle of 5. Treatment of 26 with catalytic
Rh2(OAc)4 afforded cyclopropane product 27 in 71%
yield (Scheme 5).12,13 The structure of 27 was confirmed
by single crystal X-ray analysis (Figure 2).14 Finally, enol
carbonate cleavage and cyclopropane opening was accom-
plished by exposing ketone 27 to K2CO3 in methanol at
0 �C, giving the desired ring-opening product 28 and an
unexpected rearranged product (29) in a 1:1.8 ratio as
determinedby crude 1HNMRanalysis.The structureof 29
was again unambiguously confirmed by single crystal
X-ray diffraction following chromatographic purification

Scheme 3. Synthesis of Enone 21

Scheme 4. Synthesis of Diazoketone 26
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of 28 and 29.15 Ultimately, desired dienone 28was isolated
in 31% yield, and cyclopropane 29, in 27% yield; the
change in ratio between the crude analysis and isolated
yields suggest cyclopropane 29 may be unstable to chro-
matography conditions. Cyclopropane 29 is presumably
formed from desired product 28 by a retro-norcaradiene
rearrangement after formation of an enolate following
deprotonation at C(6).16

In summary, an expediant route toward the tricyclic
core of the gagunins has been established, giving 16 of 20
carbons present in the core of these diterpenoids and
the full tricyclic skeleton. The seven-membered ring was
synthesized via an intermolecular Heck reaction at a
hindered neopentyl carbon followed by a ruthenium-
catalyzed RCM reaction of an enone and an allyl group.
The five-membered ring was prepared from an allyl group
via a Wacker oxidation and ring-forming cyclopropana-
tion from a diazoketone. Efforts to optimize this sequence
and carry 28 and 29 forward to the gagunins and their
analogs are ongoing.
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Scheme 5. Completion of the Tricyclic Core of 5 via
Cyclopropanation and Ring Opening

Figure 2. Single-crystal X-ray structures of 27 and 29.
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