Supporting Information for

Construction of Vicinal Tertiary and All-Carbon Quaternary Stereocenters via Ir-Catalyzed Regio-, Diastereo-, and Enantioselective Allylic Alkylation and Applications in Sequential Pd-Catalysis.

Wen-Bo Liu, Corey M. Reeves, Scott C. Virgil, and Brian M. Stoltz*

The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 stoltz@caltech.edu

Table of Contents:

Materials and Methods	SI2
Optimization of Reaction Parameters (Table S1)	SI4
General Procedure for Ir-Catalyzed Allylic Alkylation	SI6
Spectroscopic Data for Ir-Catalyzed Allylic Alkylation Products	SI8
Pd-Catalyzed Allylic Alkylation, General Procedure and Spectroscopic Data	SI17
Determination of Relative Stereochemistry of Compound 8a	SI19
Spectroscopic Data for New Phosphinooxazoline Ligands	SI20
Determination of Enantiomeric Excess (Table S2)	SI22
Crystal Structure Data for Compound 3af (Table S3)	SI24
¹ H NMR and ¹³ C NMR Spectra	SI33

Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon.¹ Reaction progress was monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-LCMS. TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, *p*-anisaldehyde, or KMnO₄ staining. Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40-63 nm) was used for flash chromatography. ¹H NMR spectra were recorded on Varian Inova 500 MHz and 600 MHz spectrometers and are reported relative to residual CHCl₃ (δ 7.26 ppm) or C₆HD₅ (δ 7.16 ppm). ¹³C NMR spectra were recorded on a Varian Inova 500 MHz spectrometer (125) MHz) and are reported relative to CHCl₃ (δ 77.16 ppm) or C₆HD₅ (δ 128.06 ppm). ³¹P and ¹⁹F NMR spectra were recorded on a Varian Mercury 300 MHz (at 121 MHz and 282 MHz, respectively). ¹⁹F NMR spectra were reported relative to CFCl₃ (δ 0.0 ppm). ³¹P NMR spectra were reported relative to external H₃PO₄ (δ 0.0 ppm). Data for ¹H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p =pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet, app = apparent. Data for ¹³C NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained by use of a Perkin Elmer Spectrum BXII spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption (cm⁻¹). Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell and are reported as: $\left[\alpha\right]_{D}^{T}$ (concentration in g/100 mL, solvent). Analytical HPLC was performed with an Agilent 1100 Series HPLC utilizing a Chiralpak (AD-H or AS) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained

¹ A. M. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, **1996**, *15*, 1518.

from Daicel Chemical Industries, Ltd. High resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+).

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa Aesar and used as received unless otherwise stated. Ligands L3–L4,² ligands L5–L8,³ allyl carbonates,⁴ and β -ketoesters⁵ were prepared by known methods.

List of Abbreviations:

ee – enantiomeric excess, dr – diastereomeric ratio, HPLC – high-performance liquid chromatography, SFC – supercritical fluid chromatography, TBAT – tetrabutylammonium triphenyldifluorosilicate, TLC – thin-layer chromatography, THF – tetrahydrofuran, IPA – isopropanol, TBD – 1,5,7-triazabicyclo[4.4.0]dec-5-ene, DABCO – 1,4-diazabicyclo[2.2.2]octane, cod – *cis, cis*-1,5-cyclooctadiene

² (a) Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. *Synthesis*, **2009**, 2076. (b) Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. *J. Am. Chem. Soc.* **2012**, *134*, 4812.

³ McDougal, N. T.; Streuff, J.; Mukherjee, H.; Virgil, S. C.; Stoltz, B. M. Tetrahedron Lett. 2010, 51, 5550.

⁴ (a) Wuts, P. G. M.; Ashford, S. W.; Anderson, A. M.; Atkins, J. R. Org. Lett. 2003, 5, 1483. (b) Malkov, A. V.; Gouriou, L.; Lloyd-Jones, G. C.; Starý, I.; Langer, V.; Spoor, P.; Vinader, V.; Kočovský, P. Chem. Eur. J. 2006, 12, 6910.

⁵ (a) Mander, L. N.; Sethi, S. P. *Tetrahedron Lett.* **1983**, *24*, 5425. (b) Brown, D. S.; Marples, B. A.; Smith, P.; Walton, L. *Tetrahedron* **1995**, *51*, 3587.

Ph ²		$\begin{array}{c} 0 & [Ir(\\ (2)\\ OMe & L(\\ 1a & TBD\\ 0CO_2Me & solv \end{array}$	(cod)Cl] ₂ 2 mol%) 4 mol%) (10 mol%) or additive rent, 20 °C	•		n $O_2 Me^+$	o G 4aa	O2Me
entry ^a	L	base/additive (equiv)	solvent	<i>t</i> (h)	conv (%) ^b	3aa:4aa ^b	dr of <i>3aa^b</i>	ee of <i>3aa</i> (%) ^c
1	L1	NaH (2)	THF	24	>95	>95:5	1:1.4	96 (99) ^d
2	L2	NaH (2)	THF	60	>95	>95:5	1:1.9	32 (3) ^e
3	L3	NaH (2)	THF	12	>95	95:5	>20:1	98
4	L3	_	THF	8	>95	80:20	11:1	96
5	L3	DABCO (2)	THF	8	>95	72:28	5.0:1	96
6	L3	TBD (2)	THF	8	>95	74:26	11:1	95
7	L3	Et ₃ N (2)	THF	8	>95	77:23	11:1	97
8	L3	Cs ₂ CO ₃ (2)	THF	12	>95	63:37	6.3:1	93
9	L3	K ₃ PO ₄ (2)	THF	12	>95	63:37	4.1:1	90
10	L3	NaHMDS (2)	THF	12	>95	75:25	8.3:1	93
11	L3	LiHMDS (2)	THF	12	>95	86:14	13:1	96
12	L3	LiO <i>t</i> -Bu (2)	THF	1	>95	95:5	>20:1	99
13	L3	LiCI (1)	THF	1	>95	88:12	14:1	98
14	L3	LiBr (1)	THF	1	>95 (98)	95:5	>20:1	>99
15	L3	Lil (1)	THF	1	>95	72:28	>20:1	97
16	L1	LiBr (1)	THF	60	<5	nd	nd	nd
17	L2	LiBr (1)	THF	60	<5	nd	nd	nd
18	L4	LiBr (1)	THF	12	>95	80:20	12:1	96
19	L5	LiBr (1)	THF	60	60	12:88	nd	nd
20	L3	LiBr (1)	<i>p</i> -dioxane	1	>95	95:5	>20:1	>99
21	L3	LiBr (1)	Et ₂ O	3	>95	76:24	11:1	96
22	L3	LiBr (1)	CH2CI2	60	55	68:32	9.0:1	66
23	L3	LiBr (1)	toluene	16	>95	>95:5	>20:1	91
24 ^f	L3	LiBr (1)	THF	12	>95	95:5	>20:1	99
25 ^g	L3	LiBr (1)	THF	60	60	92:8	>20:1	94

Optimization of Reaction Parameters (Table S1)

^{*a*} Reactions performed with 0.1 mmol of **2a**, 0.2 mmol of **1a** in 1 mL of solvent. ^{*b*} Determined by ¹H NMR or UHPLC-MS analysis of the crude reaction mixture. ^{*d*} (Ee) of the alternate diasteromer. ^{*e*} Measured on the minor isomer and the number in the parenthesis is ee of the major isomer. ^{*f*} 1 mol % of [Ir(cod)Cl]₂ and 2 mol % of L**3** were used. ^{*g*} 0.5 mol % of [Ir(cod)Cl]₂ and 1 mol % of L**3** were used.

General Procedure for Optimization Reaction (Table S1): All experiments were preformed in a nitrogen-filled glove box. $[Ir(cod)Cl]_2$ (1.4 mg, 0.002 mmol, 2 mol%), ligand (0.004 mmol, 4 mol%), and TBD (1.4 mg, 0.01 mmol, 10 mol%) were added to a vial equipped with a magnetic stirring bar. The vial was then charged with solvent (0.5 mL) and stirred at 20 °C for 10 min, generating an orange solution. Cinnamyl carbonate **2a** (19.2 mg, 0.1 mmol, 1.0 equiv), β -ketoester **1a** (40.4 mg, 0.2 mmol, 2.0 equiv), base or additive (as indicated below) and another 0.5 mL of solvent were added. The vial was sealed and stirred at 20 °C until allylic carbonate **2a** was fully consumed, as indicated by TLC or UHPLC-MS anaylsis. The reaction mixture was filtered through a celite pad, rinsed with CH_2Cl_2 , and concentrated under reduced pressure. The ratios of constitutional isomers (branched product to linear product: **3aa**:**4aa**) and diastereomers (dr) were determined by ¹H NMR or UHPLC-MS.

General Procedure for the Ir-Catalyzed Asymmetric Allylic Alkylation of β-Ketoesters

<u>Please note</u> that the absolute configuration was determined only for compound **3af** via X-ray analysis (vide infra). The absolute configuration for all other products **3** has been inferred by analogy. Isolated yields are reported in Tables 2 and 3 (see manuscript). For respective HPLC or SFC conditions, please refer to Table S2.

(*R*)-methyl 1-oxo-2-((S)-1-phenylallyl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate (3aa). In a nitrogen-filled glove box, [Ir(cod)Cl]₂ (2.7 mg, 0.004 mmol, 2 mol%), ligand L3 (3.7 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%) were added to a 2 dram scintillation vial equipped with a magnetic stirring bar. The vial was then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating an orange solution. Cinnamyl carbonate (2a) (38.3 mg, 0.2 mmol, 1.0 equiv), LiBr (17.3 mg, 0.2 mmol, 1.0 equiv), βketoester 1a (80.8 mg, 0.4 mmol, 2.0 equiv) and another 1 mL of THF were added. The vial was sealed and stirred at 20 °C until allylic carbonate 2a was fully consumed, as indicated by TLC or UHPLC-MS analysis. THF was evaporated and the crude mixture was then dissolved in CH₂Cl₂, filtered through a celite pad, rinsed with CH₂Cl₂, and concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l =95:5) and diastereoselectivity (dr >20:1) were determined by ¹H NMR or UHPLC-MS. The residue was purified by silica gel flash chromatography (gradient elution, $2\rightarrow 5\%$ EtOAc in hexanes) to afford **3aa** and **4aa** (62.6 mg, 98% combined yield). Allylation product **3aa** was isolated as a white solid by silica gel chromatography (gradient elution, $0 \rightarrow 2\%$ EtOAc in hexanes). >99% ee, $[\alpha]_D^{25}$ +26.3 (c 1.11, CHCl₃); $R_f = 0.3$ (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, J = 7.9, 1.2 Hz, 1H), 7.42–7.39 (m, 3H), 7.28–7.23 (m, 3H), 7.19–7.13 (m, 2H), 6.36 (dt, J = 16.8, 10.0 Hz, 1H), 5.21–5.12 (m, 2H), 4.46 (d, J= 10.0 Hz, 1H), 3.56 (s, 3H), 3.23 (ddd, J = 17.1, 12.1, 4.7 Hz, 1H), 2.88 (ddd, J = 17.6, 5.0,

3.0 Hz, 1H), 2.60 (ddd, J = 13.7, 4.7, 3.0 Hz, 1H), 2.10 (ddd, J = 13.6, 12.1, 5.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 193.2, 170.0, 143.1, 139.8, 136.6, 133.6, 132.5, 130.2, 128.8, 128.4, 128.2, 126.9, 126.7, 117.9, 62.7, 53.9, 52.6, 28.8, 26.4; IR (Neat Film, NaCl) 3066, 3028, 2948, 1731, 1685, 1636, 1599, 1491, 1453, 1433, 1358, 1298, 1283, 1238, 1214, 1169, 1108, 1080, 1032, 1001, 980, 926, 892, 808, 743 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₁H₂₁O₃ [M+H]⁺: 321.1485, found 321.1489; HPLC conditions: 2% IPA, 0.6 mL/min, Chiralcel OD-H column, $\lambda = 254$ nm, t_R (min): major = 13.80, minor = 17.89.

Spectroscopic Data for Ir-Catalyzed Allylic Alkylation Products

(*R*)-methyl 2-((*S*)-1-(4-methoxyphenyl)allyl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2carboxylate (3ab)

Ketoester **3ab** was isolated by silica gel chromatography (gradient elution, $0 \rightarrow 5\%$ EtOAc in hexanes) as a white solid. >99% ee, $[\alpha]_D^{25}$ +38.5 (*c* 0.93, CHCl₃); $R_f = 0.3$ (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, J = 7.9, 1.4 Hz, 1H), 7.41 (td, J = 7.5, 1.5 Hz, 1H), 7.37–7.31 (m, 2H), 7.31–7.21 (m, 1H), 7.21–7.12 (m, 1H), 6.86–6.75 (m, 2H), 6.32 (dt, J = 16.8, 10.0 Hz, 1H), 5.20–5.09 (m, 2H), 4.41 (d, J = 9.9 Hz, 1H), 3.75 (s, 3H), 3.56 (s, 3H), 3.23 (ddd, J = 17.1, 12.2, 4.6 Hz, 1H), 2.88 (ddd, J = 17.6, 4.9, 2.9 Hz, 1H), 2.58 (ddd, J = 13.6, 4.7, 3.0 Hz, 1H), 2.11 (ddd, J = 13.6, 12.2, 5.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 193.3, 170.1, 158.4, 143.2, 136.8, 133.6, 132.5, 131.8, 131.2, 128.8, 128.4, 126.7, 117.6, 113.5, 62.8, 55.3, 53.2, 52.6, 28.7, 26.4; IR (Neat Film, NaCl) 3073, 3003, 2950, 2836, 1732, 1687, 1636, 1608, 1601, 1581, 1511, 1454, 1442, 1435, 1357, 1337, 1303, 1242, 1215, 1181, 1114, 1078, 1033, 1000, 981, 923, 893, 834, 808, 749 cm⁻¹; HRMS (ESI+) *m/z* calc'd for fragment C₁₀H₁₁O [M-C₁₁H₁₂O₃+H]⁺: 147.0804, found 147.0807; HPLC conditions: 2% IPA, 0.6 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): minor = 27.44, major = 37.29.

(*R*)-methyl 2-((*S*)-1-(4-bromophenyl)allyl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2carboxylate (3ac)

Ketoester **3ac** was isolated by silica gel chromatography (gradient elution, $0 \rightarrow 3\%$ EtOAc in hexanes) as a colorless oil. 99% ee, $[\alpha]_D^{25}$ +49.1 (*c* 1.18, CHCl₃); $R_f = 0.4$ (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, J = 8.0, 1.4 Hz, 1H), 7.43 (td, J = 7.5, 1.5 Hz, 1H), 7.39–7.35 (m, 2H), 7.32–7.27 (m, 2H), 7.27–7.25 (m, 1H), 7.15 (dt, J = 7.7, 0.9

Hz, 1H), 6.29 (dt, J = 16.7, 10.0 Hz, 1H), 5.32–5.03 (m, 2H), 4.37 (d, J = 9.9 Hz, 1H), 3.54 (s, 3H), 3.29–3.15 (m, 1H), 2.88 (ddd, J = 17.5, 4.9, 2.8 Hz, 1H), 2.57 (ddd, J = 13.6, 4.7, 2.9 Hz, 1H), 2.09 (ddd, J = 13.5, 12.3, 4.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 193.2, 169.9, 143.0, 139.0, 136.1, 133.8, 132.4, 132.0, 131.2, 128.8, 128.4, 126.8, 121.0, 118.5, 62.5, 53.7, 52.7, 29.1, 26.4; IR (Neat Film, NaCl) 3074, 3025, 2949, 1732, 1687, 1683, 1633, 1601, 1488, 1454, 1435, 1403, 1357, 1297, 1240, 1215, 1170, 1141, 1112, 1075, 1032, 1010, 981, 925, 892, 831, 808, 750, 741 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₁H₂₀⁷⁹BrO₃ [M+H]⁺: 399.0590, found 399.0585; HPLC conditions: 2% IPA, 0.6 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): minor = 19.71, major = 23.59.

(*R*)-methyl 1-oxo-2-((*S*)-1-(4-(trifluoromethyl)phenyl)allyl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate (3ad)

Ketoester **3ad** was isolated by silica gel chromatography (gradient elution, 0→5% EtOAc in hexanes) as a colorless oil. >99% ee, $[α]_D^{25}$ +32.4 (*c* 1.51, CHCl₃); R_f = 0.3 (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.3 Hz, 2H), 7.44 (td, *J* = 7.5, 1.4 Hz, 1H), 7.28 (t, *J* = 7.5, 1H), 7.16 (d, *J* = 7.7 Hz, 1H), 6.34 (dt, *J* = 16.7, 10.1 Hz, 1H), 5.33–5.08 (m, 2H), 4.45 (d, *J* = 10.0 Hz, 1H), 3.54 (s, 3H), 3.29–3.16 (m, 1H), 2.90 (ddd, *J* = 17.6, 4.9, 2.7 Hz, 1H), 2.60 (ddd, *J* = 13.6, 4.7, 2.8 Hz, 1H), 2.11 (ddd, *J* = 13.5, 12.3, 5.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 193.1, 169.9, 144.1, 143.0, 135.8, 133.8, 132.4, 130.6, 129.1 (q, ²*J*_{CF} = 32.4 Hz), 128.8, 128.4, 126.8, 125.0 (q, ³*J*_{CF} = 3.8 Hz), 124.3 (q, ¹*J*_{CF} = 272.0 Hz), 118.8, 62.5, 54.1, 52.7, 29.3, 26.4; IR (Neat Film, NaCl) 3074, 2952, 1736, 1733, 1689, 1683, 1616, 1601, 1454, 1435, 1413, 1327, 1241, 1217, 1166, 1123, 1070, 1019, 927, 846, 809, 751, 742 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₂H₂₀¹⁹F₃O₃ [M+H]⁺: 389.1359, found 389.1346; SFC conditions: 5% IPA, 4.0 mL/min, Chiralpak AD-H column, λ = 254 nm, t_R (min): minor = 3.38, major = 3.91.

(*R*)-methyl 1-oxo-2-((*S*)-1-(pyridin-3-yl)allyl)-1,2,3,4-tetrahydronaphthalene-2carboxylate (3ae)

Ketoester **3ae** was isolated by silica gel chromatography (gradient elution 20–>50% EtOAc in hexanes) as a white solid. 98% ee, $[\alpha]_D^{25}$ +64.6 (*c* 0.46, CHCl₃); R_f = 0.4 (50% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.60 (s, 1H), 8.43 (dd, *J* = 5.0, 1.7 Hz, 1H), 8.02 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.93 (dt, *J* = 8.0, 2.0 Hz, 1H), 7.44 (td, *J* = 7.5, 1.5 Hz, 1H), 7.28 (t, *J* = 7.6 Hz, 1H), 7.23 (dd, *J* = 8.0, 4.8 Hz, 1H), 7.17 (d, *J* = 7.7 Hz, 1H), 6.36–6.29 (m, 1H), 5.22–5.18 (m, 2H), 4.31 (d, *J* = 9.8 Hz, 1H), 3.53 (s, 3H), 3.21 (ddd, *J* = 17.2, 12.3, 4.7 Hz, 1H), 2.91 (ddd, *J* = 17.5, 4.9, 2.7 Hz, 1H), 2.60 (ddd, *J* = 13.5, 4.7, 2.8 Hz, 1H), 2.17 (ddd, *J* = 13.4, 12.3, 4.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 193.3, 170.0, 150.9, 147.9, 142.9, 138.4, 136.0, 135.5, 133.9, 132.5, 128.8, 128.4, 126.9, 123.3, 119.2, 62.4, 52.7, 52.5, 29.7, 26.5; IR (Neat Film, NaCl) 3029, 2950, 2848, 1732, 1687, 1599, 1573, 1479, 1454, 1429, 1356, 1295, 1274, 1241, 1216, 1171, 1122, 1077, 1025, 999, 979, 926, 807, 749, 716 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₀H₂₀NO₃ [M+H]⁺: 322.1438, found 322.1442; HPLC conditions: 10% IPA, 1.0 mL/min, Chiralpak AD-H column, λ = 254 nm, t_R (min): minor = 13.45, major = 15.72.

(*R*)-methyl 1-oxo-2-((*R*)-1-(thiophen-2-yl)allyl)-1,2,3,4-tetrahydronaphthalene-2carboxylate (3af)

Ketoester **3af** was isolated by silica gel chromatography (gradient elution, $0 \rightarrow 3\%$ EtOAc in hexanes) as a white solid. 95% ee, $[\alpha]_D^{25}$ –14.2 (*c* 0.86, CHCl₃); $R_f = 0.4$ (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.08 (dd, J = 7.9, 1.2 Hz, 1H), 7.44 (td, J = 7.5, 1.4 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.17 (d, J = 7.7 Hz, 1H), 7.14 (dd, J = 5.1, 1.2 Hz, 1H), 6.93 (ddd, J = 3.6, 1.2, 0.7 Hz, 1H), 6.88 (dd, J = 5.1, 3.5 Hz, 1H), 6.23 (dt, J = 16.8, 10.0 Hz, 1H), 5.26–5.12 (m, 2H), 4.76 (d, J = 10.0 Hz, 1H), 3.59 (s, 3H), 3.25 (ddd, J = 17.2,

12.0, 4.8 Hz, 1H), 2.89 (ddd, J = 17.5, 5.0, 3.1 Hz, 1H), 2.55 (ddd, J = 13.7, 4.8, 3.1 Hz, 1H), 2.12 (ddd, J = 13.6, 12.0, 5.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 193.2, 169.7, 143.2, 142.3, 135.9, 133.8, 132.3, 128.9, 128.4, 126.9, 126.8, 126.4, 124.9, 118.3, 62.9, 52.7, 49.5, 28.0, 26.2; IR (Neat Film, NaCl) 3071, 2949, 2925, 2853, 1731, 1686, 1639, 1599, 1484, 1453, 1433, 1354, 1293, 1272, 1240, 1214, 1170, 1119, 1078, 1032, 979, 924, 891, 853, 807, 749 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₉H₁₉SO₃ [M+H]⁺: 327.1049, found 327.1048; SFC conditions: 10% IPA, 4.0 mL/min, Chiralcel OJ-H column, $\lambda = 254$ nm, t_R (min): major = 2.96, minor = 3.63.

(*R*)-methyl 2-((*R*)-1-(furan-2-yl)allyl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2carboxylate (3ag)

Ketoester **3ag** was isolated by silica gel chromatography (gradient elution, $0\rightarrow 3\%$ EtOAc in hexanes) as a colorless oil. 95% ee, $[\alpha]_D^{25}$ +22.5 (*c* 1.17, CHCl₃); $R_f = 0.4$ (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.06 (dd, J = 8.0, 1.4 Hz, 1H), 7.45 (td, J = 7.5, 1.5 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.25 (dd, J = 1.9, 0.9 Hz, 1H), 7.17 (d, J = 7.7 Hz, 1H), 6.25 (dd, J = 3.2, 1.8 Hz, 1H), 6.19–6.09 (m, 2H), 5.26–5.18 (m, 2H), 4.63 (d, J = 9.8 Hz, 1H), 3.63 (s, 3H), 3.24 (ddd, J = 17.3, 12.2, 4.8 Hz, 1H), 2.88 (ddd, J = 17.5, 4.9, 3.1 Hz, 1H), 2.57 (ddd, J = 13.8, 4.8, 3.1 Hz, 1H), 1.99 (ddd, J = 13.8, 12.1, 5.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 192.7, 169.7, 153.4, 143.3, 141.6, 133.7, 133.6, 132.1, 128.9, 128.4, 126.7, 119.2, 110.3, 108.4, 62.2, 52.7, 47.9, 28.1, 26.1; IR (Neat Film, NaCl) 3116, 3075, 3024, 2950, 2848, 1734, 1731, 1689, 1639, 1600, 1500, 1485, 1453, 1433, 1356, 1293, 1271, 1243, 1216, 1172, 1155, 1120, 1110, 1078, 1012, 981, 965, 928, 905, 892, 806, 745, 736 cm⁻¹; HRMS (ESI+) *m/z* calc'd for C₁₉H₁₉O₄ [M+H]⁺: 311.1278, found 311.1275; SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): major = 5.21, minor = 6.03.

(*R*)-methyl 2-((*S*,*E*)-hexa-1,4-dien-3-yl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2carboxylate (3ah)

Ketoester **3ah** was isolated by silica gel chromatography (gradient elution, 0→2% EtOAc in hexanes) as a colorless oil. 90% ee, $[α]_D^{25}$ +46.4 (*c* 1.02, CHCl₃); R_f = 0.5 (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.45 (td, *J* = 7.5, 1.5 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.19 (d, *J* = 7.7 Hz, 1H), 5.98–5.87 (m, 1H), 5.74 (ddd, *J* = 15.3, 8.0, 1.6 Hz, 1H), 5.57–5.48 (m, 1H), 5.08–5.03 (m, 2H), 3.61 (s, 3H), 3.47 (t, *J* = 8.4 Hz, 1H), 3.12 (ddd, *J* = 17.0, 12.0, 4.7 Hz, 1H), 2.91 (dt, *J* = 17.4, 4.1 Hz, 1H), 2.45 (ddd, *J* = 13.7, 4.7, 3.3 Hz, 1H), 2.25 (ddd, *J* = 13.7, 11.9, 4.9 Hz, 1H), 1.65 (ddd, *J* = 6.4, 1.7, 0.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 194.2, 171.0, 143.1, 136.7, 133.6, 132.8, 129.8, 128.8, 128.2, 128.2, 126.8, 117.6, 62.0, 53.2, 52.4, 29.5, 26.5, 18.2; IR (Neat Film, NaCl) 3075, 3028, 2951, 2854, 1732, 1688, 1600, 1454, 1438, 1356, 1300, 1272, 1235, 1214, 1169, 1122, 1090, 999, 974, 917, 890, 803, 747 cm⁻¹; HRMS (ESI+) *m/z* calc'd for C₁₈H₂₁O₃ [M+H]⁺: 288.1485, found 288.1489; SFC conditions: 2% MeOH, 2.5 mL/min, Chiralpak IC column, λ = 254 nm, t_R (min): minor = 8.23, major = 8.87.

(*R*)-ethyl 1-oxo-2-((*S*)-1-phenylallyl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate (3ba)

Ketoester **3ba** was isolated by silica gel chromatography (gradient elution, $0\rightarrow 5\%$ EtOAc in hexanes) as a white solid, >99% ee, $[\alpha]_D^{25}$ +42.7 (*c* 1.09, CHCl₃); $R_f = 0.3$ (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, J = 7.9, 1.4 Hz, 1H), 7.46–7.39 (m, 3H), 7.29–7.23 (m, 3H), 7.20–7.12 (m, 2H), 6.37 (dt, J = 16.8, 10.0 Hz, 1H), 5.20–5.07 (m, 2H), 4.40 (d, J = 9.9 Hz, 1H), 4.07–3.94 (m, 2H), 3.22 (ddd, J = 17.3, 12.2, 4.8 Hz, 1H), 2.88 (ddd, J = 17.5, 5.0, 2.9 Hz, 1H), 2.58 (ddd, J = 13.6, 4.7, 3.0 Hz, 1H), 2.12 (ddd, J = 13.6, 12.1, 5.0 Hz, 1H), 1.06 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.4, 169.7, 143.0, 140.0, 136.7, 133.5, 132.7, 130.3, 128.7, 128.3, 128.1, 126.9, 126.7, 117.9, 62.3, 61.6, 54.1, 29.2, 26.4, 14.0; IR (Neat Film, NaCl) 3063, 3027, 2978, 2934, 1727, 1699,

1689, 1685, 1599, 1490, 1452, 1363, 1298, 1282, 1235, 1212, 1157, 1107, 1080, 1018, 926, 899, 787, 773, 743 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₂₂H₂₃O₃ [M+H]⁺: 335.1642, found 335.1651; SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): minor = 13.82, major = 16.53.

(*R*)-ethyl 2-oxo-1-((*S*)-1-phenylallyl)cyclopentanecarboxylate (3ca)

Ketoester **3ca** was isolated by silica gel chromatography (gradient elution, 0→5% EtOAc in hexanes) as a colorless oil. 99% ee, $[α]_D^{25}$ –52.5 (*c* 1.04, CHCl₃); R_f = 0.3 (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.31–7.15 (m, 5H), 6.14–6.03 (m, 1H), 5.20–5.10 (m, 2H), 4.37 (d, *J* = 8.9 Hz, 1H), 4.22–4.09 (m, 2H), 2.67 (dddd, *J* = 13.4, 7.1, 3.5, 1.7 Hz, 1H), 2.24–2.14 (m, 1H), 2.13–2.02 (m, 1H), 1.84–1.71 (m, 1H), 1.69–1.59 (m, 1H), 1.59–1.49 (m, 1H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 213.4, 169.2, 139.3, 136.3, 129.9, 128.4, 127.1, 117.8, 65.9, 61.9, 52.8, 38.9, 28.5, 19.7, 14.2; IR (Neat Film, NaCl) 3083, 3062, 3030, 2979, 2891, 1752, 1719, 1639, 1601, 1493, 1465, 1452, 1405, 1365, 1315, 1223, 1138, 1105, 1026, 1003, 923, 864, 826, 757, 707 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₇H₂₁O₃ [M+H]⁺: 273.1485, found 273.1483; HPLC conditions: 2% IPA, 0.6 mL/min, Chiralcel OD-H column, λ = 210 nm, t_R (min): major = 11.23, minor = 12.73.

(*R*)-ethyl 2-oxo-1-((*S*)-1-phenylallyl)cyclohexanecarboxylate (3da)

Ketoester **3da** was isolated by silica gel chromatography (gradient elution, $0 \rightarrow 5\%$ EtOAc in hexanes) as a white solid. 98% ee, $[\alpha]_D^{25}$ +140.6 (*c* 1.25, CHCl₃); $R_f = 0.4$ (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.30 (m, 2H), 7.29–7.22 (m, 2H), 7.21–7.15 (m, 1H), 6.33 (ddd, J = 16.9, 10.2, 9.2 Hz, 1H), 5.13–4.99 (m, 2H), 4.11–3.96 (m, 2H), 3.93 (d, J = 9.2 Hz, 1H), 2.47–2.39 (m, 2H), 2.36–2.29 (m, 1H), 1.92 (dddd, J = 9.5, 4.8, 2.7, 1.5

Hz, 1H), 1.79–1.47 (m, 3H), 1.12 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 206.7, 170.8, 140.0, 137.5, 130.3, 128.0, 126.8, 117.4, 65.5, 61.4, 54.6, 42.1, 35.0, 27.2, 22.8, 14.0; IR (Neat Film, NaCl) 3077, 3028, 2977, 2939, 2865, 1714, 1635, 1600, 1491, 1452, 1388, 1365, 1340, 1309, 1262, 1231, 1204, 1133, 1085, 1020, 1002, 919, 854, 756, 704 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₈H₂₃O₃ [M+H]⁺: 287.1642, found 287.1639; SFC conditions: 10% IPA, 4.0 mL/min, Chiralpak IC column, $\lambda = 210$ nm, t_R (min): minor = 1.69, major = 1.94.

(*R*)-2-(trimethylsilyl)ethyl 2-oxo-1-((*S*)-1-phenylallyl)cyclohexanecarboxylate (3ea)

Ketoester **3ea** was isolated by silica gel chromatography (gradient elution, $0 \rightarrow 2\%$ i-BuOAc in hexanes) as a colorless oil. >99% ee, $[\alpha]_D^{25}$ +91.6 (*c* 0.45, CHCl₃); $R_f = 0.4$ (10% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.37–7.32 (m, 2H), 7.24 (ddd, J = 8.2, 6.9, 1.4 Hz, 2H), 7.21–7.15 (m, 1H), 6.34 (ddd, J = 16.9, 10.2, 9.2 Hz, 1H), 5.21–4.86 (m, 2H), 4.05 (dddd, J = 58.0, 11.8, 10.8, 5.9 Hz, 2H), 3.92 (d, J = 9.2 Hz, 1H), 2.46–2.40 (m, 2H), 2.38–2.28 (m, 1H), 1.98–1.87 (m, 1H), 1.80–1.71 (m, 1H), 1.72–1.47 (m, 3H), 0.82 (qdd, J = 13.6, 11.7, 5.7 Hz, 2H), 0.01 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 206.6, 170.9, 139.9, 137.4, 130.2, 127.9, 126.7, 117.3, 65.4, 63.7, 54.5, 42.0, 34.9, 27.0, 22.7, 17.2, -1.6; IR (Neat Film, NaCl) 2950, 1712, 1452, 1250, 1231, 1133, 921, 859, 837 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₂₁H₃₀NaO₃Si [M+Na]⁺: 381.1856, found 381.1865; SFC conditions: 3% IPA, 2.5 mL/min, Chiralcel OJ–H column, $\lambda = 210$ nm, t_R (min): minor = 1.93, major = 2.24.

(R)-methyl 4-isobutoxy-2-oxo-1-((S)-1-phenylallyl)cyclohex-3-enecarboxylate (3fa)

Ketoester **3fa** was isolated by silica gel chromatography (gradient elution, $0 \rightarrow 10\%$ EtOAc in hexanes) as a colorless oil. >99% ee, $[\alpha]_D^{25}$ +31.5 (*c* 1.88, CHCl₃); $R_f = 0.4$ (10% EtOAc

in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.29 (m, 2H), 7.27–7.20 (m, 2H), 7.20– 7.13 (m, 1H), 6.24 (dt, J = 16.7, 10.2 Hz, 1H), 5.28 (s, 1H), 5.18 (ddd, J = 16.8, 1.9, 0.8 Hz, 1H), 5.12 (dd, J = 10.0, 1.8 Hz, 1H), 4.62 (d, J = 10.4 Hz, 1H), 3.64 (s, 3H), 3.53–3.45 (m, 2H), 2.79 (dddd, J = 18.3, 11.8, 5.1, 1.6 Hz, 1H), 2.43 (ddd, J = 13.4, 5.1, 2.4 Hz, 1H), 2.26 (ddd, J = 18.2, 5.5, 2.4 Hz, 1H), 1.94 (dt, J = 13.3, 6.7 Hz, 1H), 1.83 (ddd, J = 13.4, 11.8, 5.5 Hz, 1H), 0.91 (d, J = 6.8 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 192.8, 177.2, 170.0, 139.7, 136.1, 130.2, 128.1, 126.8, 118.0, 102.9, 74.9, 61.1, 52.6, 52.1, 27.7, 26.7, 25.2, 19.11, 19.08; IR (Neat Film, NaCl) 3073, 3029, 2958, 2874, 1727, 1664, 1607, 1582, 1491, 1470, 1452, 1443, 1431, 1406, 1384, 1369, 1316, 1298, 1231, 1193, 1177, 1140, 1116, 1079, 1012, 987, 921, 903, 844, 817, 788, 764, 724 cm⁻¹; HRMS (MM: ESI-APCI+) m/zcalc'd for C₂₁H₂₇O₄ [M+H]⁺: 343.1904, found 343.1905; SFC conditions: 10% IPA, 2.5 mL/min, Chiralcel OD-H column, $\lambda = 254$ nm, t_R (min): major = 3.71, minor = 6.24.

(S)-methyl 4-oxo-3-((S)-1-phenylallyl)tetrahydro-2H-pyran-3-carboxylate (3ga)

Ketoester **3ge** was isolated by silica gel chromatography (gradient elution, $5\rightarrow10\%$ EtOAc in hexanes) as a colorless oil. 98% ee, $[\alpha]_D^{25}$ +71.1 (*c* 0.88, CHCl₃); $R_f = 0.2$ (10% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.30 (m, 2H), 7.31–7.25 (m, 2H), 7.24–7.19 (m, 1H), 6.43 (ddd, J = 16.9, 10.2, 9.4 Hz, 1H), 5.19–5.03 (m, 2H), 4.28 (dd, J = 11.9, 1.2 Hz, 1H), 4.03 (dddd, J = 11.1, 6.2, 4.9, 1.3 Hz, 1H), 3.98 (d, J = 9.4 Hz, 1H), 3.82 (dddd, J = 11.3, 9.0, 4.5, 0.6 Hz, 1H), 3.67 (d, J = 11.8 Hz, 1H), 3.61 (s, 3H), 2.70 (ddd, J = 14.5, 8.9, 6.2 Hz, 1H), 2.57 (dt, J = 14.5, 4.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 202.8, 169.7, 138.6, 136.7, 129.8, 128.4, 127.4, 118.0, 73.2, 68.6, 67.1, 52.4, 51.6, 41.9; IR (Neat Film, NaCl) 3063, 3029, 2973, 2951, 2863, 1746, 1716, 1635, 1600, 1492, 1472, 1454, 1433, 1378, 1360, 1310, 1290, 1229, 1212, 1176, 1140, 1112, 1085, 1033, 1001, 978, 925, 826, 763, 741 cm⁻¹; HRMS (ESI+) *m*/z calc'd for C₁₆H₁₉O₄ [M+H]⁺: 275.1278, found 275.1282; SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): minor = 4.65, major = 4.95.

(S)-methyl 1-benzyl-4-oxo-3-((S)-1-phenylallyl)piperidine-3-carboxylate (3ha)

Ketoester **3ha** was isolated by silica gel chromatography (gradient elution, 5→10% EtOAc in hexanes) as a colorless oil. 97% ee, $[\alpha]_D^{25}$ +34.3 (*c* 0.87, CHCl₃); R_f = 0.3 (10% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.29 (m, 5H), 7.28–7.24 (m, 2H), 7.24–7.14 (m, 3H), 6.44 (ddd, *J* = 16.9, 10.2, 9.3 Hz, 1H), 5.12–5.04 (m, 2H), 4.03 (d, *J* = 9.4 Hz, 1H), 3.59 (s, 3H), 3.64–3.54 (m, 2H), 3.15 (dd, *J* = 11.9, 2.0 Hz, 1H), 2.82–2.75 (m, 1H), 2.71 (ddd, *J* = 14.1, 8.5, 5.7 Hz, 1H), 2.65–2.56 (m, 2H), 2.53 (ddd, *J* = 13.9, 5.4, 4.3 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 205.3, 170.6, 139.4, 138.0, 137.4, 129.9, 129.2, 128.5, 128.2, 127.5, 127.1, 117.6, 66.1, 62.0, 60.2, 53.4, 53.0, 52.0, 40.9; IR (Neat Film, NaCl) 3060, 3027, 2949, 2811, 2765, 1718, 1631, 1600, 1584, 1493, 1468, 1452, 1432, 1364, 1345, 1310, 1286, 1228, 1194, 1138, 1073, 1047, 1028, 1001, 973, 922, 821, 740 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₃H₂₆NO₃ [M+H]⁺: 364.1907, found 364.1908; SFC conditions: 10% IPA, 4.0 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): major = 2.49, minor = 2.94.

General Procedure for Pd-Catalyzed Allylic Alkylation

(R)-2-allyl-2-((S)-1-phenylallyl)cyclohexanone (8a). To a 0.5 dram scintillation vial equipped with a magnetic stir bar were added $Pd_2(dba)_3$ (1.3 mg, 0.0014 mmol), L6 (1.2 mg, 0.0035 mmol), TBAT (16.6 mg, 0.031 mmol) and THF (0.9 mL) in a nitrogen-filled glove box. The dark purple mixture was stirred at ambient glove box temperature (ca. 30 °C) for 35 minutes at which point the mixture had become red-orange. Ketoester **3ea** (10.0 mg, 0.028 mmol) and allyl methylcarbonate (4.1 mg, 0.035 mmol) were then added neat to the reaction mixture. The resulting yellow-green reaction mixture was stirred at 20 °C until full conversion of the starting material was indicated by TLC analysis (reaction times typically ranged from 24 to 36 hours). The vial was removed from the glove box, uncapped and diluted with 2 ml of hexanes. Filtration through a celite pad afforded the crude residue, which was concentrated *in vacuo* and analyzed by ¹H NMR to determine the diastereomeric ratio of 8a and 9a (2:1). The residue was purified by silica gel flash chromatography (gradient elution, $0 \rightarrow 2\%$ EtOAc in hexanes) to afford **8a** and **9a** (6.5 mg, 91% combined vield) as a colorless oil. 99% ee (The enantiomeric excesses of the products 8a and 9a are inferred from the corresponding Ir-catalyzed allylic alkylation products (3ea)). Spectroscopic data for compound **8a** is as follows: $[\alpha]_D^{25} - 1.9$ (c 0.48, CHCl₃); $R_f = 0.3$ (0.4% EtOAc in hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.33–7.28 (m, 2H), 7.25–7.20 (m, 3H), 6.20 (dt, J = 16.8, 10.1 Hz, 1H), 5.68 (dddd, J = 17.1, 10.1, 8.8, 5.4 Hz, 1H), 5.09 (ddd, J = 10.1, 1.6, 0.4 Hz, 1H), 5.08 (ddd, J = 16.7, 1.7, 0.8 Hz, 1H), 4.98 (dddd, J = 10.2, 2.3, 1.3, 0.7 Hz, 1H), 4.92–4.86 (m, 1H), 3.92 (d, J = 9.9 Hz, 1H), 2.75 (dd, J = 13.7, 5.4 Hz, 1H), 2.56–2.10 (m, 2H), 2.11–1.59 (m, 7H); ¹³C NMR (126 MHz, CDCl₃) δ 212.9, 140.1, 136.3, 134.9, 130.0, 128.1, 126.8, 117.9, 117.4, 55.7, 52.8, 40.5, 37.6, 31.9, 26.2, 21.1; IR (Neat Film, NaCl) 3073, 3028, 2937, 2864, 1833, 1701, 1636, 1600, 1452, 1432, 1313, 1219, 1125, 1056, 1002, 916, 849, 787, 765 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₈H₂₃O [M+H]⁺: 255.1754; found 255.1743.

(R)-2-((S)-1-phenylallyl)-2-(2-phenylallyl)cyclohexanone

Ketone **8b** was isolated by silica gel chromatography (gradient elution, $0\rightarrow1\%$ Et₂O in hexanes) as a colorless oil. $[\alpha]_D^{25}$ -50.9 (*c* 0.22, CHCl₃); $R_f = 0.5$ (10% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.13 (m, 10H), 6.24 (dt, J = 16.8, 10.1 Hz, 1H), 5.29 (d, J = 1.8 Hz, 1H), 5.22–5.02 (m, 3H), 3.92 (d, J = 10.0 Hz, 1H), 2.95 (ddd, J = 377.8, 13.8, 0.9 Hz, 2H), 2.15–2.00 (m, 2H), 1.76–1.57 (m, 4H), 1.54–1.43 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 212.8, 145.6, 142.8, 140.3, 136.2, 129.9, 128.1, 128.0, 127.0, 126.7, 126.5, 118.2, 117.7, 56.6, 54.4, 40.6, 37.6, 30.6, 24.8, 21.4; IR (Neat Film, NaCl) 2937, 2859, 1701, 1624, 1597, 1451, 1310, 1256, 1207, 1125 910, 779 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₂₄H₂₆O [M+H]⁺: 331.2056, found 331.2065.

(R)-2-(2-methylallyl)-2-((S)-1-phenylallyl)cyclohexanone

Ketone **8c** was isolated by silica gel chromatography (gradient elution, $0 \rightarrow 2\%$ EtOAc in hexanes) as a colorless oil. $[\alpha]_D^{25}$ -41.7 (*c* 0.46, CHCl₃); $R_f = 0.4$ (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.28 (m, 2H), 7.25–7.19 (m, 3H), 6.19 (dt, *J* = 16.8, 10.1 Hz, 1H), 5.08 (dd, *J* = 10.2, 1.6 Hz, 1H), 5.03 (ddd, *J* = 16.8, 1.6, 0.8 Hz, 1H), 4.74 (ddt, *J* = 2.7, 1.8, 0.9 Hz, 1H), 4.52 (ddt, *J* = 2.4, 1.6, 0.9 Hz, 1H), 3.86 (d, *J* = 10.0 Hz, 1H), 2.90 (d, *J* = 13.1 Hz, 1H), 2.37 (dtd, *J* = 16.2, 4.9, 1.6 Hz, 1H), 2.25 (ddd, *J* = 15.9, 11.3, 6.0 Hz, 1H), 2.00 (d, *J* = 13.7 Hz, 1H), 1.93–1.78 (m, 2H), 1.74–1.63 (m, 4H), 1.59 (dt, *J* = 1.4, 0.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 212.8, 143.0, 140.3, 136.5, 130.1, 128.2, 126.9, 117.4, 115.3, 55.5, 54.2, 40.7, 40.2, 30.8, 25.5, 25.1, 21.4; IR (Neat Film, NaCl) 3071, 3030,

2940, 2865, 1704, 1637, 1599, 1452, 1375, 1314, 1209, 1124, 994, 916, 893, 756 cm⁻¹; HRMS (MM: ESI-APCI+) *m*/*z* calc'd for C₁₉H₂₅O [M+H]⁺: 269.1920; found 269.1920.

Determination of the Relative Configuration of Compound 8a

The relative configuration of compound **8a** was determined via NOE analysis of the corresponding spirocycle, **SI1**, obtained via ring-closing metathesis. The experimental procedure by which **SI1** was generated is as follows:

(15,5R)-1-phenylspiro[4.5]dec-2-en-6-one (SI1). To a flask charged with Grubbs-Hoveyda second generation catalyst (1.85 mg, 0.0030 mmol) under an atmosphere of argon was added a solution of cyclohexanone 8a (15.0 mg, 0.059 mmol) in 6 mL benzene. The reaction mixture was heated to 50 °C and stirred for 4 hours, at which point the reaction was determined to be complete by TLC analysis. The reaction vessel was cooled to 25 °C and 0.5 mL of ethyl vinyl ether was added. After 30 minutes of stirring, the crude mixture was purified directly by silica gel chromatography (gradient elution, $0 \rightarrow 3\%$ EtOAc in hexanes) to afford spirocycle SI1 (12.7 mg, 0.056 mmol, 94% yield) as a colorless oil. $\left[\alpha\right]_{D}^{25}$ -133.6 $(c \ 0.25, \text{CHCl}_3); R_f = 0.5 \ (10\% \text{ EtOAc in hexanes}); ^1\text{H NMR} \ (500 \text{ MHz}, \text{CDCl}_3) \ \delta \ 7.32-$ 7.24 (m, 2H), 7.24–7.18 (m, 1H), 7.18–7.12 (m, 2H), 6.01–5.52 (m, 1H), 4.75 (p, J = 2.1Hz, 1H), 2.66–2.56 (m, 2H), 2.56–2.44 (m, 2H), 1.95–1.85 (m, 1H), 1.64–1.49 (m, 3H), 1.42 (dtd, J = 14.66, 3.6, 2.3 Hz, 1H), 1.35–0.72 (m, 1H), 1.01 (ddd, J = 13.9, 11.3, 4.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 212.9, 140.6, 133.8, 129.3, 128.0, 127.4, 126.4, 59.8, 53.7, 42.8, 39.6, 35.5, 26.8, 22.2; IR (Neat Film, NaCl) 3944, 3693, 3053, 2986, 2941, 2866, 2685, 2305, 1698, 1422, 1264, 1129, 896, 756 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₆H₁₉O [M+H]⁺: 227.1430; found 227.1431.

Spectroscopic Data for New Phosphinooxazoline Ligands

(S)-2-(2-(bis(4-(trifluoromethyl)phenyl)phosphino)phenyl)-4-isopropyl-5,5-diphenyl-4,5-dihydrooxazole (*L7*)

[α]_D²⁵ –163.33 (*c* 0.75, CHCl₃,); R_f = 0.3 (4:1 hexanes in dichloromethane); ¹H NMR (500 MHz, C₆D₆) δ 8.22 (ddd, J = 7.8, 3.9, 1.4 Hz, 1H), 7.29 (ddd, J = 49.4, 8.4, 1.4 Hz, 4H), 7.21–7.14 (m, 5H), 7.10–7.02 (m, 7H), 7.02–6.94 (m, 3H), 6.89 (td, J = 7.6, 1.4 Hz, 1H), 6.81 (ddd, J = 7.9, 3.4, 1.3 Hz, 1H), 4.66 (d, J = 4.5 Hz, 1H), 1.74 (td, J = 6.6, 4.6 Hz, 1H), 0.83 (d, J = 6.7 Hz, 3H), 0.59 (d, J = 6.5 Hz, 3H); ¹³C NMR (126 MHz, C₆D₆) δ 160.1 (d, $J_{CP} = 3.2$ Hz), 145.8 , 144.4–143.9 (m) 141.2 , 137.9 (d, $J_{CP} = 27.4$ Hz), 134.9, 134.5 (dd, $J_{CP} = 70.9$, 20.8 Hz), 132.6 (d, $J_{CP} = 21.4$ HZ), 131.3 , 130.6 (dd, $J_{CP} = 32.3$, 18.4 Hz), 130.3 (d, $J_{CP} = 3.2$ Hz), 129.1, 127.5 (d, $J_{CF} = 11.2$ Hz), 126.8, 125.3 (ddt, $J_{CF} = 14.7$, 7.6, 3.8 Hz), 124.8 (d, $J_{CF} = 273.5$ Hz), 93.1, 81.1 (d $J_{CP} = 2.0$ Hz), 30.60, 22.0; ¹⁹F NMR (282 MHz, C₆D₆) δ –62.44, –62.53; ³¹P NMR (121MHz, C₆D₆) δ –7.59; IR (Neat Film, NaCl) 3060, 2961, 1654, 1605, 1493, 1470, 1448, 1396, 1323, 1166, 1127, 1060, 1016, 954, 832, 756 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₈H₃₀¹⁹F₆NOP [M+H]⁺: 662.2042, found 662.2080.

(*R*)-2-(2-(bis(4-(trifluoromethyl)phenyl)phosphino)-5-(trifluoromethyl)phenyl)-4isopropyl-5,5-dimethyl-4,5-dihydrooxazole (*L8*)

[α]_D²⁵ +9.45 (*c* 3.20, CHCl₃,); $R_f = 0.3$ (4:1 hexanes in dichloromethane); ¹H NMR (500 MHz, C₆D₆) δ 8.57 (dd, J = 3.3, 2.0 Hz, 1H), 7.41–7.36 (m, 4H), 7.21–7.15 (m, 4H), 7.10 (dd, J = 8.2, 2.0 Hz, 1H), 6.78 (dd, J = 8.0, 3.0 Hz, 1H), 3.22 (d, J = 8.4 Hz, 1H), 1.55 (ddt, J = 13.0, 8.3, 6.5 Hz, 1H), 1.21 (s, 3H), 1.08 (s, 3H), 0.99 (d, J = 6.5 Hz, 3H), 0.75 (d, J = 6.5 Hz, 3H); ¹³C NMR (126 MHz, C₆D₆) δ 159.1 (d, $J_{CP} = 4.0$ Hz), 143.5 (t, $J_{CP} = 14.8$ Hz), 142.7 (d, $J_{CP} = 30.6$ Hz), 134.5 (dd, $J_{CP} = 21.3$, 15.7 Hz), 133.7 (d, $J_{CP} = 19.5$ Hz), 131.1 (q, $J_{CF} = 3.6$ Hz), 126.4–126.1 (m), 125.9 (d, $J_{CF} = 3.2$ Hz), 126.5–125.0 (m), 123.8 (d, $J_{CF} = 3.3$ Hz), 123.3, 87.2, 81.7 (d, $J_{CP} = 1.5$ Hz), 29.1, 28.8, 21.1, 20.8, 20.8 (d, $J_{CP} = 1.8$ Hz); ¹⁹F NMR (282 MHz, C₆D₆) δ –62.63, -62.85; ³¹P NMR (121MHz, C₆D₆) δ –7.10; IR (Neat Film, NaCl) 2974, 1652, 1397, 1323, 1165, 1128, 1060, 1017, 832, 756 cm⁻¹; HRMS (FAB+) m/z calc'd for C₂₉H₂₆O¹⁹F₉NP [M+H]⁺: 606.1608, found 606.1585.

entry	compound	analytic conditions	ee (%)
1	O Ph CO ₂ Me <i>3aa</i>	HPLC Chiralcel OD-H, λ = 254 nm 2% IPA/hexanes, 0.6 mL/min t _R (min): major 13.80, minor 17.89	>99
2	O CO ₂ Me OMe	HPLC Chiralpak AD-H, λ = 254 nm 2% IPA/hexanes, 0.6 mL/min t _R (min): minor 27.44, major 37.29	>99
3	CO ₂ Me Br 3ac	HPLC Chiralpak AD-H, λ = 254 nm 2% IPA/hexanes, 0.6 mL/min t _R (min): minor 19.71, major 23.59	99
4	O CO ₂ Me CF ₃ 3ad	SFC Chiralpak AD-H, λ = 254 nm 5% IPA/CO ₂ , 4.0 mL/min t _R (min): minor 3.38, major 3.91	>99
5		HPLC Chiralpak AD-H, λ = 254 nm 90% IPA/hexanes, 1.0 mL/min t _R (min): minor 13.45, major 15.72	98
6	CO ₂ Me s	SFC Chiralcel OJ-H, λ = 254 nm 10% IPA/CO ₂ , 4.0 mL/min, t _R (min): major 2.96, minor 3.63	95
7	CO ₂ Me	SFC Chiralpak AD-H, λ = 254 nm 10% IPA/CO ₂ , 2.5 mL/min, t _R (min): major 5.21, minor 6.03	95
8	CO ₂ Me	SFC Chiralpak IC, λ = 254 nm 2% MeOH/CO ₂ , 2.5 mL/min, t _R (min): minor 8.23, major 8.87	90

Determination of Enantiomeric Excess (Table S2)

entry	compound	analytic conditions	ee (%)
9	O Ph CO ₂ Et 3ba	SFC Chiralpak AD-H, λ = 254 nm 5% IPA/CO ₂ , 2.5 mL/min, t _R (min): minor 13.82, major 16.53	>99
10	O Ph CO ₂ Et	HPLC Chiralcel OD-H, λ = 220 nm 2% IPA/hexanes, 0.6 mL/min t _R (min): major 11.23, minor 12.73	99
11	CO ₂ Et	SFC Chiralpak IC, λ = 210 nm 10% IPA/CO ₂ , 4.0 mL/min t _R (min): minor 1.69, major 1.94	98
12	CO ₂ CH ₂ CH ₂ TMS	SFC Chiralcel OJ-H, λ = 210 nm 3% IPA/CO ₂ , 2.5 mL/min t _R (min): minor 1.93, major 2.24	>99
13	<i>i</i> -BuO <i>3fa</i>	SFC Chiralcel OD-H, λ = 254 nm 10% IPA/CO ₂ , 2.5 mL/min t _R (min): major 3.71, minor 6.24	>99
14	O Ph CO ₂ Me 3ga	SFC Chiralpak AD-H, λ = 210 nm 5% IPA/CO ₂ , 2.5 mL/min t _R (min): minor 4.65, major 4.95	98
15	O Ph CO ₂ Me Bn <i>3ha</i>	SFC Chiralpak AD-H, λ = 210 nm 10% IPA/CO ₂ , 4.0 mL/min t _R (min): major 2.49, minor 2.94	97

Crystal Structure Analysis of Ketoester 3af

The allylation ketoester **3af** (>99% ee) was recrystallized from *i*-PrOH/hexanes (liquid/liquid diffusion) to provide suitable crystals for X-ray analysis, mp = 98-99 °C.

Table S3: Crystal Data and Structure Analysis Details for allylation ketoester 3af(CCDC 939243).

Empirical formula	C19 H18 O3 S
Formula weight	326.39
Crystallization solvent	<i>i</i> -PrOH/hexanes
Crystal shape	block
Crystal color	colourless
Crystal size	0.13 x 0.23 x 0.29 mm

Data Collection

Preliminary photograph(s)	rotation
Type of diffractometer	Bruker SMART 1000 ccd
Wavelength	0.71073 Å MoK
Data collection temperature	100 K

Theta range for 9849 reflections used		
in lattice determination	2.30 to 30.92°	
Unit cell dimensions	a = 8.4853(3) Å $a = 9$	
	b = 10.8613(4) Å	b= 90°
	c = 17.6979(6) Å	g = 90°
Volume	$1631.06(10) \text{ Å}^3$	
Z	4	
Crystal system	orthorhombic	
Space group	P 21 21 21 (# 19)	
Density (calculated)	1.329 g/cm^3	
F(000)	688	
Theta range for data collection	2.2 to 36.7°	
Completeness to theta = 25.000°	99.9%	
Index ranges	-14 £ h £ 14, -18 £ k £ 18, -29 ±	£1£29
Data collection scan type	and scans	
Reflections collected	49310	
Independent reflections	7841 [R _{int} = 0.0476]	
Reflections $> 2s(I)$	6228	
Average s(I)/(net I)	0.0436	
Absorption coefficient	0.21 mm ⁻¹	
Absorption correction	Semi-empirical from equivalen	its
Max. and min. transmission	1.0000 and 0.9025	

Structure Solution and Refinement

Primary solution method	dual
Secondary solution method	?
Hydrogen placement	difmap
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7841 / 0 / 303
Treatment of hydrogen atoms	refall
Goodness-of-fit on F ²	1.55
Final R indices [I>2s(I), 6228 reflections]	R1 = 0.0483, wR2 = 0.0806
R indices (all data)	R1 = 0.0694, wR2 = 0.0846
Type of weighting scheme used	calc
Weighting scheme used	
Max shift/error	0.000

Average shift/error	0.000
Absolute structure parameter	0.01(3)
Extinction coefficient	n/a
Largest diff. peak and hole	0.37 and -0.24 e·Å ⁻³

_refine_ls_abs_structure_details;

Flack x determined using 2400 quotients [(I+)-(I-)]/[(I+)+(I-)];

(Parsons and Flack (2004), Acta Cryst. A60, s61).

_refine_ls_abs_structure_Flack 0.01(3)

_refine_ls_abs_structure_Hooft 0.02(3)

Programs Used

Cell refinement	SAINT V8.27B (Bruker-AXS, 2007)
Data collection	Bruker SMART v5.054 (Bruker-AXS, 2007)
Data reduction	SAINT V8.27B (Bruker-AXS, 2007)
Structure solution	SHELXT (Sheldrick, 2012)
Structure refinement	SHELXL-2013/2 (Sheldrick, 2013)
Graphics	DIAMOND 3 (Crystal Impact, 1999)

Table S3. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for 3af. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U _{eq}	
S(1)	9499(4)	3027(2)	9424(2)	26(1)	
S(1A)	7396(4)	1194(2)	8920(1)	26(1)	
O(1)	10909(1)	3864(1)	7769(1)	20(1)	
O(2)	6712(1)	3819(1)	6298(1)	22(1)	
O(3)	8198(1)	5196(1)	6915(1)	20(1)	
C(1)	8415(2)	3108(1)	7316(1)	14(1)	
C(2)	10216(2)	3266(1)	7292(1)	14(1)	
C(3)	11064(2)	2667(1)	6651(1)	14(1)	
C(4)	12665(2)	2961(1)	6537(1)	18(1)	
C(5)	13491(2)	2453(2)	5941(1)	21(1)	
C(6)	12737(2)	1641(2)	5451(1)	21(1)	
C(7)	11165(2)	1346(1)	5556(1)	18(1)	

C(8)	10300(2)	1842(1)	6161(1)	14(1)
C(9)	8605(2)	1477(1)	6273(1)	16(1)
C(10)	7999(2)	1793(1)	7062(1)	17(1)
C(11)	7676(2)	4054(1)	6775(1)	15(1)
C(12)	7433(2)	6145(2)	6468(1)	27(1)
C(13)	7740(2)	3432(1)	8120(1)	16(1)
C(14)	8255(2)	2565(1)	8741(1)	19(1)
C(15)	9443(3)	1759(2)	9876(1)	44(1)
C(16)	8455(3)	892(2)	9630(1)	42(1)
C(17)	7757(14)	1354(11)	8921(7)	51(4)
C(17A)	9366(19)	2793(11)	9301(7)	45(3)
C(18)	5962(2)	3506(2)	8090(1)	18(1)
C(19)	5128(2)	4517(2)	8192(1)	25(1)

Table S4. Bond lengths [Å] and angles [°] for 3af.

S(1)-C(14)	1.681(3)
S(1)-C(15)	1.594(4)
S(1A)-C(14)	1.688(3)
S(1A)-C(16)	1.579(3)
O(1)-C(2)	1.2177(17)
O(2)-C(11)	1.2030(18)
O(3)-C(11)	1.3403(17)
O(3)-C(12)	1.452(2)
C(1)-C(2)	1.538(2)
C(1)-C(10)	1.539(2)
C(1)-C(11)	1.539(2)
C(1)-C(13)	1.5733(19)
C(2)-C(3)	1.492(2)
C(3)-C(4)	1.409(2)
C(3)-C(8)	1.406(2)
C(4)-H(4)	0.967(17)
C(4)-C(5)	1.380(2)
C(5)-H(5)	0.950(19)
C(5)-C(6)	1.394(2)
C(6)-H(6)	0.958(18)
C(6)-C(7)	1.385(2)

C(7)-H(7)	0.963(16)
C(7)-C(8)	1.405(2)
C(8)-C(9)	1.505(2)
C(9)-H(9A)	0.942(17)
C(9)-H(9B)	1.013(17)
C(9)-C(10)	1.527(2)
C(10)-H(10A)	0.977(17)
C(10)-H(10B)	0.966(18)
C(12)-H(12A)	0.96(2)
C(12)-H(12B)	1.03(2)
C(12)-H(12C)	1.02(2)
С(13)-Н(13)	0.996(18)
C(13)-C(14)	1.511(2)
C(13)-C(18)	1.511(2)
C(14)-C(17)	1.418(11)
C(14)-C(17A)	1.391(12)
C(15)-H(15)	0.90(3)
C(15)-C(16)	1.334(3)
C(15)-C(17A)	1.517(15)
C(16)-H(16)	0.98(3)
C(16)-C(17)	1.476(12)
C(17)-H(17)	1.04(4)
C(17A)-H(17A)	0.97(5)
C(18)-H(18)	0.950(18)
C(18)-C(19)	1.319(2)
C(19)-H(19A)	0.97(2)
C(19)-H(19B)	1.01(2)
C(15)-S(1)-C(14)	94.87(18)
C(16)-S(1A)-C(14)	95.02(18)
C(11)-O(3)-C(12)	114.07(12)
C(2)-C(1)-C(10)	108.86(12)
C(2)-C(1)-C(11)	108.20(11)
C(2)-C(1)-C(13)	111.27(11)
C(10)-C(1)-C(13)	112.89(12)
C(11)-C(1)-C(10)	110.12(12)
C(11)-C(1)-C(13)	105.36(11)

O(1)-C(2)-C(1)	121.30(13)
O(1)-C(2)-C(3)	121.79(13)
C(3)-C(2)-C(1)	116.91(12)
C(4)-C(3)-C(2)	118.41(13)
C(8)-C(3)-C(2)	121.60(13)
C(8)-C(3)-C(4)	119.98(13)
C(3)-C(4)-H(4)	118.7(10)
C(5)-C(4)-C(3)	120.59(14)
C(5)-C(4)-H(4)	120.7(10)
C(4)-C(5)-H(5)	120.4(11)
C(4)-C(5)-C(6)	119.70(15)
C(6)-C(5)-H(5)	119.9(11)
C(5)-C(6)-H(6)	119.0(11)
C(7)-C(6)-C(5)	120.27(15)
C(7)-C(6)-H(6)	120.7(11)
C(6)-C(7)-H(7)	121.4(10)
C(6)-C(7)-C(8)	121.19(15)
C(8)-C(7)-H(7)	117.4(10)
C(3)-C(8)-C(9)	121.84(13)
C(7)-C(8)-C(3)	118.25(13)
C(7)-C(8)-C(9)	119.90(13)
C(8)-C(9)-H(9A)	108.3(10)
C(8)-C(9)-H(9B)	109.8(10)
C(8)-C(9)-C(10)	112.49(12)
H(9A)-C(9)-H(9B)	104.7(14)
C(10)-C(9)-H(9A)	108.8(10)
C(10)-C(9)-H(9B)	112.4(9)
C(1)-C(10)-H(10A)	107.6(10)
C(1)-C(10)-H(10B)	109.6(10)
C(9)-C(10)-C(1)	113.53(12)
C(9)-C(10)-H(10A)	109.2(10)
C(9)-C(10)-H(10B)	109.8(10)
H(10A)-C(10)-H(10B)	106.8(14)
O(2)-C(11)-O(3)	123.43(13)
O(2)-C(11)-C(1)	124.93(13)
O(3)-C(11)-C(1)	111.60(12)
O(3)-C(12)-H(12A)	113.2(14)

O(3)-C(12)-H(12B)	106.2(11)
O(3)-C(12)-H(12C)	110.2(11)
H(12A)-C(12)-H(12B)	109.9(18)
H(12A)-C(12)-H(12C)	106.8(18)
H(12B)-C(12)-H(12C)	110.5(16)
C(1)-C(13)-H(13)	106.6(10)
C(14)-C(13)-C(1)	114.33(12)
C(14)-C(13)-H(13)	107.1(10)
C(18)-C(13)-C(1)	110.12(12)
C(18)-C(13)-H(13)	108.2(10)
C(18)-C(13)-C(14)	110.28(13)
C(13)-C(14)-S(1)	121.21(15)
C(13)-C(14)-S(1A)	124.16(14)
C(17)-C(14)-S(1)	107.6(5)
C(17)-C(14)-C(13)	131.0(5)
C(17A)-C(14)-S(1A)	108.4(6)
C(17A)-C(14)-C(13)	127.1(6)
S(1)-C(15)-H(15)	120.9(19)
C(16)-C(15)-S(1)	117.68(19)
C(16)-C(15)-H(15)	121.4(19)
C(16)-C(15)-C(17A)	106.1(5)
C(17A)-C(15)-H(15)	132(2)
S(1A)-C(16)-H(16)	113.9(17)
C(15)-C(16)-S(1A)	118.07(19)
C(15)-C(16)-H(16)	128.0(17)
C(15)-C(16)-C(17)	106.8(5)
C(17)-C(16)-H(16)	125.0(17)
C(14)-C(17)-C(16)	112.8(8)
С(14)-С(17)-Н(17)	116(2)
С(16)-С(17)-Н(17)	131(2)
C(14)-C(17A)-C(15)	112.1(9)
C(14)-C(17A)-H(17A)	124(3)
C(15)-C(17A)-H(17A)	124(3)
C(13)-C(18)-H(18)	118.4(11)
C(19)-C(18)-C(13)	125.07(16)
C(19)-C(18)-H(18)	116.5(11)
C(18)-C(19)-H(19A)	121.1(14)

C(18)-C(19)-H(19B)	119.8(11)
H(19A)-C(19)-H(19B)	119.1(17)

Symmetry transformations used to generate equivalent atoms:

Table S5. Anisotropic displacement parameters $(Å^2 x \ 10^4)$ for 3af. The anisotropic displacement factor exponent takes the form: $-2p^2$ [$h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²	
S(1)	360(9)	243(10)	173(5)	5(6)	-83(5)	58(8)	
S(1A)	335(10)	229(6)	231(7)	93(6)	-46(6)	-2(6)	
O(1)	198(5)	189(5)	197(5)	-39(4)	-40(4)	-28(4)	
O(2)	242(6)	202(5)	213(5)	-7(4)	-87(5)	5(4)	
O(3)	220(6)	136(5)	253(6)	36(4)	-82(5)	-16(4)	
C(1)	145(6)	132(6)	130(6)	-2(5)	-6(5)	-11(5)	
C(2)	168(7)	127(6)	140(6)	26(5)	-27(5)	-4(5)	
C(3)	151(6)	139(6)	138(6)	19(5)	-17(5)	-6(5)	
C(4)	166(7)	188(7)	188(7)	24(5)	-23(6)	-20(6)	
C(5)	160(7)	267(8)	204(7)	46(6)	-2(6)	-6(6)	
C(6)	232(8)	258(8)	146(7)	24(6)	23(6)	39(6)	
C(7)	223(8)	188(7)	143(6)	4(5)	-6(6)	3(6)	
C(8)	168(7)	131(6)	136(6)	23(5)	-18(5)	4(5)	
C(9)	185(7)	142(6)	153(6)	-24(5)	-2(5)	-32(5)	
C(10)	191(7)	139(7)	170(7)	-10(5)	10(5)	-36(5)	
C(11)	149(7)	150(6)	157(6)	4(5)	14(5)	-6(5)	
C(12)	330(10)	151(7)	333(9)	58(7)	-107(8)	5(7)	
C(13)	197(7)	140(6)	136(6)	-6(5)	-7(5)	4(5)	
C(14)	215(7)	198(7)	152(7)	4(5)	7(6)	34(6)	
C(15)	537(14)	571(14)	214(9)	-26(9)	-113(9)	224(12)	
C(16)	451(13)	329(11)	469(12)	186(9)	150(10)	127(10)	
C(17)	480(60)	540(60)	500(50)	-210(40)	-180(40)	20(40)	
C(17A)	510(50)	330(50)	510(70)	90(40)	70(50)	-90(40)	
C(18)	185(7)	194(7)	163(7)	6(6)	6(6)	-3(6)	

C(19)	262(9)	251(9)	244(8)	-56(7)	-34(7)	49(7)	
-------	--------	--------	--------	--------	--------	-------	--

Т

able S6. Hydrogen coordinates ($x \ 10^3$) and isotropic displacement parameters (Å²x 10³) for 3af.

	х	у	Z	U _{iso}	
 H(4)	1318(2)	350(2)	689(1)	11(4)	
H(5)	1457(2)	265(2)	587(1)	23(5)	
H(6)	1331(2)	131(2)	503(1)	18(4)	
H(7)	1063(2)	79(1)	522(1)	12(4)	
H(9A)	852(2)	62(2)	620(1)	14(4)	
H(9B)	793(2)	185(2)	586(1)	14(4)	
H(10A)	846(2)	122(2)	743(1)	14(4)	
H(10B)	687(2)	168(2)	708(1)	17(4)	
H(12A)	766(3)	608(2)	594(1)	44(6)	
H(12B)	784(2)	697(2)	667(1)	32(5)	
H(12C)	624(3)	608(2)	652(1)	32(5)	
H(13)	815(2)	426(2)	825(1)	17(4)	
H(15)	1003(3)	165(3)	1030(2)	72(8)	
H(16)	827(3)	7(3)	985(2)	80(9)	
H(17)	689(4)	98(3)	857(2)	10(8)	
H(17A)	1003(5)	352(4)	932(2)	9(11)	
H(18)	539(2)	277(2)	799(1)	20(4)	
H(19A)	564(3)	531(2)	828(1)	40(6)	
H(19B)	394(2)	448(2)	818(1)	27(5)	

Table S7. Hydrogen bonds for 3af [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(12)-H(12B)O(1)#1	1.03(2)	2.52(2)	3.539(2)	173.4(16)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,y+1/2,-z+3/2

¹H NMR and ¹³C NMR Spectra

CO₂M

0:

¹H NMR (500 MHz, CDCl₃) of compound **3ag**.

¹³C NMR (126 MHz, CDCl₃) of compound **3ag**.

£....

0

220

Supporting Information for Stoltz et al.

СF₃

