ARTICLE IN PRESS

Tetrahedron xxx (2014) 1-5

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Stereochemical evaluation of bis(phosphine) copper catalysts for the asymmetric alkylation of 3-bromooxindoles with α -arylated malonate esters

Chung Whan Lee, Seo-Jung Han, Scott C. Virgil, Brian M. Stoltz*

Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States

ARTICLE INFO

Article history: Received 30 September 2014 Received in revised form 24 October 2014 Accepted 27 October 2014 Available online xxx

Keywords: 3,3-Disubstituted oxindole Chiral bis(phosphine) ligands Copper catalysis Asymmetric catalysis

1. Introduction

3,3-Disubstituted oxindole moieties are present in a wide variety of natural products and pharmaceutical agents.¹ Accordingly, methods for the asymmetric construction of 3,3-disubstituted oxindoles have attracted considerable attention from the synthetic community, and a number of catalytic stereoselective approaches to provide C3 quaternary stereocenters on oxindoles have been reported.^{2,3} In 2007, we discovered that 3,3-disubstituted oxindoles **3** were furnished efficiently by base-mediated alkylation of reactive electrophilic *o*-azaxylyxene **2**, generated from 3-halooxindole **1**, with nucleophilic malonate esters (Scheme 1a).^{4a} Additionally, we developed a method for the stereoselective al-kylation of 3-bromooxindoles by using a copper (*R*)-Ph-BOX ligand complex (Scheme 1b).^{4b}

Following our development of these methods, our attention turned to the syntheses of the polycyclic alkaloids communesin F and perophoramidine.^{5,6} We envisioned that the stereochemistry at the vicinal quaternary centers on communesin F and perophoramidine could be installed utilizing the conditions described in Scheme 1b. However, attempts to produce diesters **8** and **9** via copper(II) bisoxazoline catalyzed enantioselective alkylation of 3bromooxindoles **4** and **5** with α -arylated malonate esters **6** and **7**

ABSTRACT

An improved method for the asymmetric alkylation of 3-bromooxindoles with α -arylated malonate esters is described. The asymmetric alkylation demonstrated was achieved up to 70% ee utilizing a copper(II) bis(phosphine) complex.

© 2014 Elsevier Ltd. All rights reserved.

Tetrahedror

Scheme 1. Construction of 3,3-disubstituted oxindoles by alkylation of 3-halooxindoles.

were unsuccessful (Scheme 2). Perhaps this result was to be expected, since the nucleophiles (α -arylated malonate esters **6** and **7**) were both sterically demanding and electronically deactivated by resonance stabilization through the *o*-nitrophenyl substituent. Therefore, we pursued the development of an alternative catalytic system.

^{*} Corresponding author. E-mail address: stoltz@caltech.edu (B.M. Stoltz).

2

ARTICLE IN PRESS

C.W. Lee et al. / Tetrahedron xxx (2014) 1-5

Scheme 2. Attempts for alkylation of 3-bromooxindoles with α -arylated malonate esters.

In our previous studies, we tested a variety of metal catalysts (e.g., Cu^{II}, Mg^{II}, La^{III}, and Ni^{II}) and discovered that the combination of Cu^{II} and a chiral bisoxazoline ligand effectively promoted the catalytic reaction.⁴ Chiral Cu(II) bis(phosphine) complexes have also found use in stereoselective synthesis.⁷ Since the catalytic system can be formed with a number of different chiral bis(phosphine) ligands, quite a few options would be available for developing a stereoselective reaction. Herein, we describe several screening studies designed and undertaken to optimize the reaction conditions for the alkylation of 3-bromooxindoles with α -arylated malonate esters using a copper(II) bis(phosphine) catalyst.

2. Results and discussion

2.1. Initial screening results

To develop a stereoselective alkylation method, we chose simple substrates for optimization studies; specifically, we used bromooxindole **5** without a substituent on the aromatic ring and *o*nitrophenyl dimethylmalonate **12** as a coupling partner. Bromooxindole **5** was easily prepared from indole in four steps by a known sequence,⁵ which was then added to *o*-nitrophenyl dimethylmalonate **12** and cesium carbonate in THF solvent to afford a racemic product **13** in good yield (Scheme 3).

Scheme 3. Synthesis of the racemic product.

Choosing (*R*)-BINAP as a chiral ligand, we began our research by screening various copper sources, bases, and solvents. For instance we attempted the following variations of copper ions: copper(II) triflate, copper(II) chloride with silver hexafluoroantimonate, copper(II) isobutyrate, copper(II) *tert*-butoxide (generated in situ by adding lithium *tert*-butoxide to copper(II) isobutyrate and ligand mixture), copper(II) ethylhexanoate, and copper(II)

trifluoroacetylacetonate. We explored both organic and inorganic bases, including diisopropylethylamine, pyridine, tetramethylethylenediamine (TMEDA), triethylamine, diisopropylamine, 1,8diazabicyclo[5,4,0]undec-7-ene (DBU), sodium carbonate, potassium acetate, sodium ethylhexanoate, and cesium carbonate. The various reaction combinations were attempted in the following solvents: dichloromethane, tetrahydrofuran, benzene, acetonitrile, and dioxane. Evaluating the 93 reactions that were explored,⁸ we found that copper(II) *tert*-butoxide and the ligand complex generated in THF, which was similar to Fandrick's conditions for asymmetric propargylation,⁷ exhibited the best reactivity without generation of side products for the coupling of the arylated malonate **12** and bromooxindole **5** in CH₂Cl₂ (high conversion, 20% ee).

2.2. Ligand screening and optimization studies

Based on previous studies, we selected copper(II) isobutyrate, lithium *tert*-butoxide, and THF solvent for generation of the catalytic species with chiral ligands, diisopropylamine as the base and CH₂Cl₂ as solvent. We have screened 69 chiral bis(phosphine) ligands⁸ under similar condition, finding WALPHOS and DiazaPHOS to give the best enantioselectivities (Fig. 1).

Fig. 1. Results with DiazaPHOS and WALPHOS.

Having identified the most effective ligands, we next screened several copper sources under lower temperatures. Although none of these sources exhibited better results than the combination of copper(II) isobutyrate and lithium *tert*-butoxide for WALPHOS (**N1** and **N2**), we were able to observe better stereoselectivity at low temperature (Table 1, entries 6 and 16). With DiazaPHOS (**W1**), copper(II) triflate showed better selectivity at 0 °C (Table 1, entries 22 and 23).

Further investigations using WALPHOS and DiazaPHOS in the alkylation reaction

TIPSO	Br Me0 H 5 12	DMe NO ₂ Metal	, Ligand, Temp. <i>i</i> -Pr₂NEt, CH₂Cl₂ 48 hr	TIPSO N H 13	NO ₂ CO ₂ Me CO ₂ Me O
Entry	Metal sources	Ligand	Additive	Temp (°C)	ee ^a (%)
1	CuCl ₂	N1	AgBF ₄	-45	_
2	CuCl ₂	N1	AgNTf ₂	-45	_
3	CuCl ₂	N1	AgPF ₆	-45	_
4	CuCl ₂	N1	AgSbF ₆	-45	_
5	CuCl ₂	N1	LiOt-Bu	-45	_
6	Cu(isobutyrate) ₂	N1	LiOt-Bu	-45	44
7	Cu(isobutyrate) ₂	N1	AgSbF ₆	-45	_
8	Cu(hfacac) ₂	N1		-45	Trace
9	$Cu(OTf)_2$	N1		-45	Trace
10	$Cu(OTf)_2$	N1	LiOt-Bu	-45	23
11	Cu(EH) ₂	N1		-45	Trace

Please cite this article in press as: Lee, C. W.; et al., Tetrahedron (2014), http://dx.doi.org/10.1016/j.tet.2014.10.065

ARTICLE IN PRESS

C.W. Lee et al. / Tetrahedron xxx (2014) 1-5

Table 1 (continued)

Entry	Metal sources	Ligand	Additive	Temp (°C)	ee ^a (%)
12	CuCl ₂	N2	AgBF ₄	-45	_
13	CuCl ₂	N2	$AgNTf_2$	-45	_
14	CuCl ₂	N2	AgPF ₆	-45	_
15	CuCl ₂	N2	AgSbF ₆	-45	_
16	Cu(isobutyrate) ₂	N2	LiOt-Bu	-45	54
17	Cu(hfacac) ₂	N2		-45	30
18	Cu(OTf) ₂	N2		-45	45
19	Cu(EH) ₂	N2		-45	Trace
20	Cu(isobutyrate) ₂	W1	LiOt-Bu	0	Trace
21	Cu(isobutyrate) ₂	W1 ^b	LiOt-Bu	0	Trace
22	Cu(OTf) ₂	W1		0	40
23	Cu(OTf) ₂	W1 ^b		0	50

Conditions: 0.0049 mmol **5**, 0.0145 mmol **12**, Cu (20 mol %), ligand (22 mol %), sdditive (20 mol %), *i*-Pr₂NEt (3 equiv), 0.1 mL CH₂Cl₂ (0.049 M). Metal catalyst, ligand, and additives were mixed in THF. THF was removed in vacuo, and the resultant was diluted with the reaction solvent. The reaction was initiated by addition of base. Cu(hfacac)₂: copper(II) hexafluoroacetylacetonate, Cu(EH)₂: copper(II) ethylhexanoate.

 $^{\rm a}$ Enantiomeric excess was measured by chiral SFC. —: Desired product was not observed.

^b Ligand of 44 mol % was used.

With a suitable bis(phosphine) ligand in hand (**N1**), we tested multiple solvents and bases. However, amine bases weaker than Hünig's base (Table 2, entries 1–12) could not initiate the reaction, whereas stronger base (entries 13–18) decreased the stereo-selectivity. The copper bis(phosphine) complex demonstrated similar selectivity in dichloromethane (entry 19), THF (entry 20), and chloroform (entry 22), however, it showed worse selectivity in

Table 2

Investigation of reaction solvents and bases with WALPHOS in the alkylation reaction

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	CH ₂ Cl ₂	DABCO	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	THF	DABCO	_
4 $CHCl_3$ $DABCO$ 5 Toluene $DABCO$ 6 DME $DABCO$ 7 CH_2Cl_2 $DMAP$ 8 THF $DMAP$ 9 CH_3CN $DMAP$ 10 $CHCl_3$ $DMAP$ 11 Toluene $DMAP$ 12 DME $DMAP$ 13 CH_2Cl_2 Cs_2CO_3 35 14 THF Cs_2CO_3 20 16 $CHCl_3$ Cs_2CO_3 20 16 $CHCl_3$ Cs_2CO_3 10 19 CH_2Cl_2 $i-Pr_2NEt$ 40 20 THF $i-Pr_2NEt$ 50 21 CH_3CN $i-Pr_2NEt$ 30 22 $CHCl_3$ $i-Pr_2NEt$ 40 23 Toluene $i-Pr_2NEt$ 24 DME $i-Pr_2NEt$	3	CH ₃ CN	DABCO	_
5 Toluene DABCO 6 DME DABCO 7 CH2Cl2 DMAP 8 THF DMAP 9 CH3CN DMAP 10 CHCl3 DMAP 11 Toluene DMAP 12 DME DMAP 13 CH2Cl2 CS2CO3 35 14 THF CS2CO3 20 16 CHCl3 CS2CO3 20 17 Toluene CS2CO3 20 17 Toluene CS2CO3 18 DME CS2CO3 10 19 CH2Cl2 <i>i</i> -Pr2NEt 40 20 THF <i>i</i> -Pr2NEt 50 21 CH3CN <i>i</i> -Pr2NEt 50 21 CH3CN <i>i</i> -Pr2NEt 40 22 CHCl3 <i>i</i> -Pr2NEt 40 23 Toluene <i>i</i> -Pr2NEt 24 DME <i>i</i> -Pr2NEt<	4	CHCl ₃	DABCO	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	Toluene	DABCO	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	DME	DABCO	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	CH ₂ Cl ₂	DMAP	_
9 CH ₃ CN DMAP 10 CHCl ₃ DMAP 11 Toluene DMAP 12 DME DMAP 13 CH ₂ Cl ₂ CS ₂ CO ₃ 35 14 THF CS ₂ CO ₃ 15 15 CH ₃ CN CS ₂ CO ₃ 20 16 CHCl ₃ CS ₂ CO ₃ 20 17 Toluene CS ₂ CO ₃ 18 DME CS ₂ CO ₃ 10 19 CH ₂ Cl ₂ <i>i</i> -Pr ₂ NEt 40 20 THF <i>i</i> -Pr ₂ NEt 30 21 CH ₃ CN <i>i</i> -Pr ₂ NEt 40 22 CHCl ₃ <i>i</i> -Pr ₂ NEt 40 23 Toluene <i>i</i> -Pr ₂ NEt 24 DME <i>i</i> -Pr ₂ NEt	8	THF	DMAP	_
10 CHCl ₃ DMAP 11 Toluene DMAP 12 DME DMAP 13 CH2Cl2 Cs2CO3 35 14 THF CS2CO3 15 15 CH3CN CS2CO3 20 16 CHCl ₃ Cs2CO3 20 17 Toluene CS2CO3 18 DME CS2CO3 19 CH2Cl2 <i>i</i> -Pr2NEt 40 20 THF <i>i</i> -Pr2NEt 30 22 CHCl3 <i>i</i> -Pr2NEt 40 23 Toluene <i>i</i> -Pr2NEt 24 DME <i>i</i> -Pr2NEt	9	CH ₃ CN	DMAP	_
11 Toluene DMAP 12 DME DMAP 13 CH ₂ Cl ₂ Cs ₂ CO ₃ 35 14 THF Cs ₂ CO ₃ 15 15 CH ₃ CN Cs ₂ CO ₃ 20 16 CHCl ₃ Cs ₂ CO ₃ 20 17 Toluene Cs ₂ CO ₃ 18 DME Cs ₂ CO ₃ 10 19 CH ₂ Cl ₂ <i>i</i> -Pr ₂ NEt 40 20 THF <i>i</i> -Pr ₂ NEt 50 21 CH ₃ CN <i>i</i> -Pr ₂ NEt 40 22 CHCl ₃ <i>i</i> -Pr ₂ NEt 40 23 Toluene <i>i</i> -Pr ₂ NEt 24 DME <i>i</i> -Pr ₂ NEt	10	CHCl ₃	DMAP	_
$\begin{array}{cccccccc} 12 & DME & DMAP & \\ 13 & CH_2Cl_2 & Cs_2CO_3 & 35 \\ 14 & THF & Cs_2CO_3 & 15 \\ 15 & CH_3CN & Cs_2CO_3 & 20 \\ 16 & CHCl_3 & Cs_2CO_3 & 20 \\ 17 & Toluene & Cs_2CO_3 & \\ 18 & DME & Cs_2CO_3 & 10 \\ 19 & CH_2Cl_2 & i-Pr_2NEt & 40 \\ 20 & THF & i-Pr_2NEt & 50 \\ 21 & CH_3CN & i-Pr_2NEt & 30 \\ 22 & CHCl_3 & i-Pr_2NEt & 40 \\ 23 & Toluene & i-Pr_2NEt & \\ 24 & DME & i-Pr_2NEt & \\ \end{array}$	11	Toluene	DMAP	_
13 CH2Cl2 Cs2CO3 35 14 THF Cs2CO3 15 15 CH3CN Cs2CO3 20 16 CHCl3 Cs2CO3 20 17 Toluene Cs2CO3 18 DME Cs2CO3 10 19 CH2Cl2 <i>i</i> -Pr2NEt 40 20 THF <i>i</i> -Pr2NEt 50 21 CH3CN <i>i</i> -Pr2NEt 30 22 CHCl3 <i>i</i> -Pr2NEt 40 23 Toluene <i>i</i> -Pr2NEt 24 DME <i>i</i> -Pr2NEt	12	DME	DMAP	_
14 THF Cs ₂ CO ₃ 15 15 CH ₃ CN Cs ₂ CO ₃ 20 16 CHCl ₃ Cs ₂ CO ₃ 20 17 Toluene Cs ₂ CO ₃ - 18 DME Cs ₂ CO ₃ 10 19 CH ₂ Cl ₂ <i>i</i> -Pr ₂ NEt 40 20 THF <i>i</i> -Pr ₂ NEt 50 21 CH ₃ CN <i>i</i> -Pr ₂ NEt 30 22 CHCl ₃ <i>i</i> -Pr ₂ NEt 40 23 Toluene <i>i</i> -Pr ₂ NEt - 24 DME <i>i</i> -Pr ₂ NEt -	13	CH ₂ Cl ₂	Cs ₂ CO ₃	35
15 CH ₃ CN Cs ₂ CO ₃ 20 16 CHCl ₃ Cs ₂ CO ₃ 20 17 Toluene Cs ₂ CO ₃ 18 DME Cs ₂ CO ₃ 10 19 CH ₂ Cl ₂ <i>i</i> -Pr ₂ NEt 40 20 THF <i>i</i> -Pr ₂ NEt 50 21 CH ₃ CN <i>i</i> -Pr ₂ NEt 30 22 CHCl ₃ <i>i</i> -Pr ₂ NEt 40 23 Toluene <i>i</i> -Pr ₂ NEt 24 DME <i>i</i> -Pr ₂ NEt	14	THF	Cs ₂ CO ₃	15
$\begin{array}{cccccc} 16 & CHCl_3 & Cs_2CO_3 & 20 \\ 17 & Toluene & Cs_2CO_3 & - \\ 18 & DME & Cs_2CO_3 & 10 \\ 19 & CH_2Cl_2 & i\cdotPr_2NEt & 40 \\ 20 & THF & i\cdotPr_2NEt & 50 \\ 21 & CH_3CN & i\cdotPr_2NEt & 30 \\ 22 & CHCl_3 & i\cdotPr_2NEt & 40 \\ 23 & Toluene & i\cdotPr_2NEt & - \\ 24 & DME & i\cdotPr_2NEt & - \\ \end{array}$	15	CH ₃ CN	Cs ₂ CO ₃	20
$\begin{array}{ccccc} 17 & Toluene & Cs_2CO_3 &\\ 18 & DME & Cs_2CO_3 & 10\\ 19 & CH_2Cl_2 & i-Pr_2NEt & 40\\ 20 & THF & i-Pr_2NEt & 50\\ 21 & CH_3CN & i-Pr_2NEt & 30\\ 22 & CHCl_3 & i-Pr_2NEt & 40\\ 23 & Toluene & i-Pr_2NEt &\\ 24 & DME & i-Pr_2NEt &\\ \end{array}$	16	CHCl ₃	Cs ₂ CO ₃	20
$\begin{array}{ccccc} 18 & DME & Cs_2CO_3 & 10 \\ 19 & CH_2Cl_2 & i-Pr_2NEt & 40 \\ 20 & THF & i-Pr_2NEt & 50 \\ 21 & CH_3CN & i-Pr_2NEt & 30 \\ 22 & CHCl_3 & i-Pr_2NEt & 40 \\ 23 & Toluene & i-Pr_2NEt & \\ 24 & DME & i-Pr_2NEt & \\ \end{array}$	17	Toluene	Cs ₂ CO ₃	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	DME	Cs ₂ CO ₃	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	CH ₂ Cl ₂	<i>i</i> -Pr ₂ NEt	40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	THF	i-Pr ₂ NEt	50
$\begin{array}{ccccc} 22 & CHCl_3 & i-Pr_2NEt & 40 \\ 23 & Toluene & i-Pr_2NEt & \\ 24 & DME & i-Pr_2NEt & \end{array}$	21	CH ₃ CN	i-Pr ₂ NEt	30
23Toluene <i>i</i> -Pr2NEt24DME <i>i</i> -Pr2NEt	22	CHCl ₃	i-Pr ₂ NEt	40
24 DME <i>i</i> -Pr ₂ NEt —	23	Toluene	<i>i</i> -Pr ₂ NEt	_
	24	DME	<i>i</i> -Pr ₂ NEt	—

Conditions: 0.0024 mmol **5**, 0.0072 mmol **12**, Cu (20 mol %), ligand (22 mol %), LiOt-Bu (20 mol %), base (3 equiv), 0.06 mL solvent (0.04 M). —: Desired product was not observed.

acetonitrile (entry 21) and failed to proceed at all in toluene and 1,2-dimethoxyethane (DME).

In addition to these studies, we examined the effect of the catalyst and ligand loading on the stereoselectivity of our alkylation reaction. Unsatisfactory results were produced with low catalyst or ligand loading (Table 3, entries 1, 2, and 4), but 20 mol % of copper(II) isobutyrate and 40 mol % of the ligand gave the product in 56% ee (Table 3, entry 3). Stoichiometric amounts of the copper precursor and ligand produced only a slight increase in ee (Table 3, entry 5). Additionally, we investigated the impact of the equivalents of Hünig's base on the selectivity of the reaction. Results showed the amount of Hünig's base had little effect on the stereoselectivity of the product (Table 3, entries 6–13). Subsequent examination of concentration effects showed lowering the concentration of the reaction mixture from 0.05 M to 0.02 M resulted in increase of stereoselectivity (Table 4).

Table 3

Examination of the amount of catalyst and ligand loading in the alkylation reaction

TIPSO	Br MeO NH 5 12	Ve D2 Cu(II) isob LiO <i>t</i> -Bu, <i>i</i> CH ₂ Cl ₂ - 48 h	PPPh2 Me TIPSO utyrate Pr2NEt 45 °C r 1.	NO ₂ CO ₂ Me CO ₂ Me
Entry	Cu(isobutyrate) ₂	Ligand	<i>i</i> -Pr ₂ NEt (equiv)	ee (%)
1	10 mol %	10 mol %	3.0	25
2	10 mol %	20 mol %	3.0	28
3	20 mol %	40 mol %	3.0	56
4	20 mol %	10 mol %	3.0	35
5	1 equiv	1 equiv	3.0	60
6	20 mol %	20 mol %	1.0	33
7	20 mol %	20 mol %	1.5	35
8	20 mol %	20 mol %	2.0	38
9	20 mol %	20 mol %	2.5	37
10	20 mol %	20 mol %	4.0	36
11	20 mol %	20 mol %	5.0	37
12	20 mol %	20 mol %	6.0	36
13	20 mol %	20 mol %	20	36

Conditions: 0.0049 mmol ${\bf 5},$ 0.0145 mmol ${\bf 12},$ LiOt-Bu (10 mol %), 0.1 mL CH_2Cl_2 (0.049 M).

Table 4

Examination of concentration in the malonate addition reaction

TIPSO Br M H 5		Cu(III) isobutyrate LiO <i>t</i> -Bu, <i>i</i> -Pr ₂ NEt CH ₂ Cl ₂ , -45 °C 48 hr	TIPSO CO ₂ Me CO ₂ Me N H 13
Entry	Conce	entration (M)	ee (%)
1	0.005	i	53
2	0.01		63
3	0.02		64
4	0.05		55
5	0.25		40

Conditions: 0.0049 mmol **5**, 0.0145 mmol **13**, Cu (20 mol %), ligand (40 mol %), LiOt-Bu (20 mol %), *i*-Pr₂NEt (3 equiv).

Finally, we explored a set of WALPHOS ligands (**N1–N8**) under our optimized conditions. Gratifyingly, we observed improved ee by using (Ph,Cy)-WALPHOS (Table 5, entry 5, leading to product formation in 70% ee with moderate conversion, whereas other

Please cite this article in press as: Lee, C. W.; et al., Tetrahedron (2014), http://dx.doi.org/10.1016/j.tet.2014.10.065

4

ARTICLE IN PRESS

C.W. Lee et al. / Tetrahedron xxx (2014) 1-5

Table 5

The effect of WALPHOS substituents under optimized condition in the alkylation reaction

Conditions: 0.0049 mmol **5**, 0.0145 mmol **12**, Cu (20 mol %), ligand (40 mol %), LiOt-Bu (20 mol %), *i*-Pr₂NEt (3 equiv), 0.25 mL CH₂Cl₂ (0.02 M). —: Desired product was not observed.

ligands showed diminished selectivity. To date, this is the best result we have, which is a great improvement over the starting point.

3. Conclusion

Asymmetric alkylation of 3-halooxindoles with malonate esters is an effective method to construct 3,3,-disubstituted oxindole moieties. Herein, we have reported that copper(II) chiral bis(phosphine) complex demonstrated reactivity with a highly stabilized and sterically hindered α -arylated malonate ester, which were unreactive substrates in previously developed conditions. This method could be applied to the installation of vicinal quaternary centers on the communesin F and perophoramidine scaffolds and could be useful in the synthesis of a variety of other natural products.

4. Selected experimentals

4.1. Synthesis of rac-13

To a flame-dried round-bottomed flask equipped with a stirbar were added bromooxindole 5 (20 mg, 0.045 mmol), o-nitrophenyl dimethylmalonate 12 (37 mg, 0.135 mmol), and THF (0.5 mL). To the mixture was added cesium carbonate (47.4 mg, 0.045 mmol) at ambient temperature and the reaction mixture was then stirred for 3 h. The reaction mixture was then treated with saturated NH₄Cl aqueous solution, extracted with EtOAc, washed with brine, and dried over MgSO₄. After concentration in vacuo, the crude product was obtained. Chromatography (6:1 hexanes/ethyl acetate) on silica gel afforded the title compound 13 (23 mg, 80% yield) as colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 8.0 (d, *J*=8.1 Hz, 1H), 7.85 (s, 1H), 7.74 (dd, J=7.9, 1.7 Hz, 1H), 7.40 (dtd, J=26.6, 7.4, 1.5 Hz, 2H), 7.30 (d, J=7.8 Hz, 1H), 7.14 (td, J=7.7, 1.3 Hz, 1H), 6.90 (td, J=7.7, 1.2 Hz, 1H), 6.75 (dd, J=7.8, 1.1 Hz, 1H), 3.74 (s, 3H), 3.65 (s, 3H), 3.35 (ddd, J=9.5, 8.4, 6.9 Hz, 1H), 3.06 (td, J=9.3, 4.5, 1H), 2.93 (ddd, J=12.6, 8.8, 6.7 Hz, 1H), 2.54 (ddd, J=12.8, 8.4, 4.4 Hz, 1H), 0.89 (s, 21H). ¹³C NMR (126 MHz, CDCl₃) δ 177.86, 167.63, 167.27, 150.34,

140.67, 132.46, 131.12, 129.49, 129.23, 128.63, 128.61, 126.73, 125.39, 122.45, 109.98, 109.12, 59.52, 56.71, 52.81, 52.80, 38.34, 29.70, 17.85, 17.84, 11.80. IR (neat film, NaCl) 2923, 2852, 1722, 1617, 1532, 1463, 1353, 1259, 1097, 992, 799, 753 cm⁻¹; HRMS (MM) *m/z* calcd for $C_{30}H_{40}N_2O_8Si [M+H]^+$: 585.2627, found 585.2636.

4.2. Ligand screening procedure

Every step was performed in a nitrogen-filled glove box. Solutions of copper(II) isoburtyrate (8 mg, 0.034 mmol) in THF (3.5 mL), lithium tert-butoxide (2.72 mg, 0.034 mmol) in THF (3.5 mL), bromooxindole 5 (70 mg, 0.17 mmol), and malonate 12 (129 mg, 0.51 mmol) in CH₂Cl₂ (1.75 mL), *i*-Pr₂NEt (0.1 mL, 0.57 mmol) in CH₂Cl₂ (2 mL) were prepared in 2 dram vials prior to reaction setup. To 1 dram vials equipped with stirbars, and ligand (1.1 umol. 22 mol %) were distributed copper(II) isobutyrate in THF (0.1 mL, 0.97 µmol, 20 mol %). The heterogeneous solution was agitated at room temperature for 10-20 min until a clear homogeneous solution was generated. The reaction mixtures were charged with lithium tert-butoxide in THF (0.1 mL, 0.97 µmol, 20 mol %). Reaction mixtures were allowed to stir for 5 min and concentrated under reduced pressure. A mixture of bromooxindole 5 and malonate 12 in CH₂Cl₂ (0.05 mL, 4.85 µmol, 14.55 µmol) was dispensed to each vial and allowed to stir for 10 min. After setting the reaction temperature, i-Pr2NEt in CH2Cl2 (0.05 mL, 14.55 µmol, 3 equiv) was added to the reaction vials and allowed to stir for 48 h. Upon completion, saturated aqueous ammonium chloride solution (0.1 mL) was added, and the mixture was filtered through silica gel. Each filtrate was diluted by 1 mL of solvent (ethyl acetate or isopropanol) and analyzed by chiral SFC. The mixture was separated by an AD-H column with 20% isopropanol as eluant. See Supplementary data for more details.

Acknowledgements

The authors wish to thank NIH-NIGMS (R01GM080269-01), Amgen, the Gordon and Betty Moore Foundation, and Caltech for financial support. S.-J.H thanks Fulbright Commission (Foreign Student Program, No. 15111120) and the Ilju Foundation of Education & Culture (Pre-doctoral Research Fellowship) for financial support. Catalyst center (Caltech) is acknowledged for assistance with reaction screenings. Drs. Florian Vogt, Sandy Ma, Xiaoquing Han, and Shyam Krishnan are acknowledged for preliminary research.

Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.tet.2014.10.065.

References and notes

- (a) Tokunaga, T.; Hume, W. E.; Umezome, T.; Okazaki, K.; Ueki, Y.; Kumagai, K.; Hourai, S.; Nagamine, J.; Seki, H.; Taiji, M.; Noguchi, H.; Nagata, R. J. Med. Chem. 2001, 44, 4641–4649; (b) Woodward, C. L.; Li, Z.; Kathcart, A. K.; Terrell, J.; Gerena, L.; Lopez-Sanchez, M.; Kyle, D. E.; Bhattacharjee, A. K.; Nichols, D. A.; Ellis, W.; Prigge, S. T.; Geyer, J. A.; Waters, N. C. J. Med. Chem. 2003, 46, 3877–3882; (c) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748–8758; (d) Marti, C.; Carreira, E. M. Eur, J. Org. Chem. 2003, 2209–2219; (e) Lin, H.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 36–51; (f) Trost, B. M.; Brennan, M. K. Synthesis 2009, 3003–3025; (g) Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Shangary, S.; Gao, W.; Qin, D.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Wang, S. J. Med. Chem. 2006, 49, 3432–3435.
- Reviews: (a) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381–1407;
 (b) Klein, J. E. M. N.; Taylor, R. J. K. Eur. J. Org. Chem. 2011, 6821–6841; (c) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247–7290; (d) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104–6155.
- Recent examples: (a) Holmquist, M.; Blay, G.; Pedro, J. R. Chem. Commun. 2014, 9309–9312; (b) Hu, F.-L.; Wei, Y.; Shi, M. Chem. Commun. 2014, 8912–8914; (c) Chen, D.; Xu, M.-H. J. Org. Chem. 2014, 79, 7746–7751; (d) Li, C.; Guo, F.; Xu, K.;

Please cite this article in press as: Lee, C. W.; et al., Tetrahedron (2014), http://dx.doi.org/10.1016/j.tet.2014.10.065

ARTICLE IN PRESS

C.W. Lee et al. / Tetrahedron xxx (2014) 1-5

Zhang, S.; Hu, Y.; Zha, Z.; Wang, Z. Org. Lett. **2014**, *16*, 3192–3195; (e) Zhu, X.-L; Xu, J.-H.; Cheng, D.-J.; Zhao, L.-J.; Liu, X.-Y.; Tan, B. Org. Lett. **2014**, *16*, 2192–2195; (f) Liu, Z.-M.; Li, N.-K.; Huang, X.-F.; Wu, B.; Li, N.; Kwok, C.-Y.; Wang, Y.; Wang, X.-W. Tetrahedron **2014**, *70*, 2406–2415; (g) Cao, Z.-Y.; Wang, Y.-H.; Zeng, X.-P.; Zhou, J. Tetrahedron **2014**, *70*, 2406–2415; (g) Cao, Z.-Y.; Wang, Y.-H.; Zeng, X.-P.; Zhou, J. Tetrahedron **2014**, *55*, 2571–2584; (h) Trost, B. M.; Osipov, M. Angew. Chem., Int. Ed. **2013**, *52*, 9176–9181; (i) Zhou, F.; Zeng, X.-P.; Wang, C.; Zhao, X.-L.; Zhou, J. Chem. Commun. **2013**, 2022–2024; (j) Katayev, D.; Jia, Y.-X.; Sharma, A. K.; Banerjee, D.; Besnard, C.; Sunoj, R. B.; Kündig, E. P. Chem.—Eur. J. **2013**, *19*, 11916–11927; (k) Zhing, F.; Dou, X.; Han, X.; Yao, W.; Zhu, Q.; Meng, Y.; Lu, Y. Angew. Chem., Int. Ed. **2013**, *52*, 943–947; (l) Shen, K.; Liu, X.; Feng, X. Chem. Soc. **2012**, *3*, 327–334 (m) Uraguchi, D.; Koshimoto, K.; Ooi, T. J. Am. Chem. Soc. **2012**, *134*, 6972–6975; (n) Trost, B. M.; Xie, J.; Sieber, J. D. J. Am. Chem. Soc. **2011**, *133*, 20611–20622; (o) Ding, M.; Zhou, F.; Qian, Z.-Q.; Zhou, J. Org. Biomol. Chem. **2010**, *8*, 2912–2914; (p) Trost, B. M.; Zhang, Y. Chem.—Eur. J. **2010**, *16*, 296–303; (q) Trost, B. M.; Czabaniuk, L. C. J. Am. Chem. Soc. **2011**, *132*, 15534–15536(; r) Tian, X.; Jiang, K.; Peng, J.; Du, W.; Chen, Y.-C. Org. Lett. **2008**, *10*, 3583–3586; (s) Trost, B. M.; Frederiken, M. U. Angew. Chem., Int. Ed. **2005**, *44*, 308–310.

- (a) Krishnan, S.; Stoltz, B. M. Tetrahedron Lett. 2007, 48, 7571–7573; (b) Ma, S.; Han, X.; Krishnan, S.; Virgil, S. C.; Stoltz, B. M. Angew. Chem., Int. Ed. 2009, 48, 8037–8041.
- Han, S.-J.; Vogt, F.; Krishnan, S.; May, J. A.; Gatti, M.; Virgil, S. C.; Stoltz, B. M. Org. Lett. 2014, 16, 3316–3319.
- 6. Other efforts toward total syntheses of communesins and perophoramidine: (a) May, J. A.; Zeidan, R. K.; Stoltz, B. M. *Tetrahedron Lett.* **2003**, *44*, 1203–1205; (b) Crawley, S. L.; Funk, R. L. Org. *Lett.* **2003**, *5*, 3169–3171; (c) May, J. A.; Stoltz, B. M. *Tetrahedron* **2006**, *62*, 5262–5271; (d) Yang, J.; Song, H.; Xiao, X.; Wang, J.; Qin, Y. Org. *Lett.* **2006**, *8*, 2187–2190; (e) Crawley, S. L.; Funk, R. L. Org. *Lett.* **2006**, *8*,

3995–3998; (f) Seo, J. H.; Artman, G. D., III; Weinreb, S. M. J. Org. Chem. **2006**, *71*, 8891–8900; (g) Yang, J.; Wu, H.; Shen, L.; Qin, Y. J. Am. Chem. Soc. **2007**, *129*, 13794–13795; (h) George, J. H.; Adlington, R. M. Synlett **2008**, 2093–2096; (i) Siengalewicz, P.; Gaich, T.; Mulzer, J. Angew. Chem., Int. Ed. **2010**, *49*, 2000–2003; (j) Liu, P.; Seo, J. H.; Weinreb, S. M. Angew. Chem., Int. Ed. **2010**, *49*, 2000–2003; (k) Zuo, Z.; Xie, W.; Ma, D. J. Am. Chem. Soc. **2010**, *132*, 13226–13228; (l) Zuo, Z.; Ma, D. Angew. Chem., Int. Ed. **2010**, *49*, 2000–2003; (k) Zuo, Z.; Xie, W.; Ma, D. J. Am. Chem. Soc. **2010**, *132*, 13226–13228; (l) Zuo, Z.; Ma, D. Angew. Chem., Int. Ed. **2011**; (m) Belmar, J.; Funk, R. L. J. Am. Chem. Soc. **2012**, *134*, 16941–16943; (n) Artman, G. D., III; Weinreb, S. M. Org. Lett. **2003**, *5*, 1523–1526; (o) Fuchs, J. R.; Funk, R. L. J. Am. Chem. Soc. **2004**, *126*, 5068–5069; (p) Sabahi, A.; Novikov, A.; Rainier, J. D. Angew. Chem., Int. Ed. **2006**, *45*, 4317–4320; (q) Evans, M. A.; Sacher, J. R.; Weinreb, S. M. Tetrahedron **2009**, *65*, 6712–6719; (r) Wu, H.; Xue, F.; Xiao, X.; Qin, Y. J. Am. Chem. Soc. **2010**, *132*, 14052–14054; (s) Schammel, A. W.; Chiou, G.; Garg, N. K. Org. Lett. **2012**, *14*, 4556–4559; (t) Ishida, T.; Takemoto, Y. Tetrahedron **2013**, *69*, 4517–4523; (u) Ishida, T.; Ikota, H.; Kurahashi, K.; Tsukano, C.; Takemoto, Y. Angew. Chem., Int. Ed. **2013**, *52*, 14098–14101; (w) Trost, B. M.; Osipov, M.; Krüger, S.; Zhang, Y. Chem. Sci. **2014**, http://dx.doi.org/10.1039/C4SC01826E

- 7. (a) Fandrick, D. R.; Fandrick, K. R.; Reeves, J. T.; Tan, Z.; Tang, W.; Capacci, A. G.; Rodriguez, S.; Song, J. J.; Lee, H.; Yee, N. K.; Senanayake, C. H. *J. Am. Chem. Soc.* **2010**, *132*, 7600–7601; (b) Fandrick, K. R.; Fandrick, D. R.; Reeves, J. T.; Ma, S.; Li, W.; Lee, H.; Grinberg, N.; Lu, B.; Senanayake, C. H. *J. Am. Chem. Soc.* **2011**, *133*, 10332–10335; (c) Fandrick, K. R.; Ogikubo, J.; Fandrick, D. R.; Patel, N. D.; Saha, J.; Lee, H.; Ma, S.; Grinberg, N.; Busacca, C. A.; Senanayake, C. H. *Org. Lett.* **2013**, *15*, 1214–1217.
- See Supplementary data for the list of chiral bis(phosphine) ligands and screening results.