Tetrahedron Letters xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis and exploration of electronically modified (R)-5,5-dimethyl-(p-CF₃)₃-*i*-PrPHOX in palladium-catalyzed enantio- and diastereoselective allylic alkylation: a practical alternative to (R)-(p-CF₃)₃-*t*-BuPHOX

Robert A. Craig II, Brian M. Stoltz*

Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States

ARTICLE INFO

Article history: Received 27 May 2015 Accepted 10 June 2015 Available online xxxx

Keywords: Allylic alkylation Diastereoselective Enantioselective Palladium-catalyzed Phosphinooxazoline

Introduction

Phosphinooxazoline (PHOX) ligands, developed by Helmchen.¹ Williams,² and Pfaltz,³ have proven to be a privileged ligand scaffold in transition metal catalysis.⁴ PHOX ligands have found application in a variety of asymmetric transition metal-catalyzed transformations including asymmetric hydrogenation,⁵ azomethine ylide cycloadditions,⁶ intermolecular Heck couplings,⁷ and hydrosilylation⁸ as well as transition metal-catalyzed allylic substitution^{4,9} and protonation¹⁰ reactions. Our lab has extensively explored the utility of the PHOX ligand scaffold in the palladiumcatalyzed enantioselective allylic alkylation of carbocyclic¹¹ and heterocyclic¹² substrates. These investigations have revealed electronically modified PHOX ligands (i.e. (S)-(p-CF₃)₃-t-BuPHOX ((S)-L1), Fig. 1)¹³ can profoundly enhance the rate of reaction as well as yield, enantiomeric excess (ee) and/or diastereomeric ratio of a product containing an all-carbon quaternary center (e.g. use of (S)-L1 vs (S)-L2 to construct lactam 2,^{12e} cyclohexanone 4,^{13c} cyclohexenone 6,^{13b} and cyclohexanone diastereomers 9 and **10**,¹⁴ Schemes 1A–C and 2, respectively).

Most commonly, transition metal complexes employing *tert*-leucinol-derived PHOX ligands (e.g. (*S*)-L1 and (*S*)-L2, Fig. 1)

http://dx.doi.org/10.1016/j.tetlet.2015.06.039 0040-4039/© 2015 Elsevier Ltd. All rights reserved.

ABSTRACT

The synthesis of the novel electronically modified phosphinooxazoline (PHOX) ligand, (R)-5,5-dimethyl-(p-CF₃)₃-*i*-PrPHOX, is described. The utility of this PHOX ligand is explored in both enantio- and diastereoselective palladium-catalyzed allylic alkylations. These investigations prove (R)-5,5-dimethyl-(p-CF₃)₃-*i*-PrPHOX to be an effective and cost-efficient alternative to electronically modified PHOX ligands derived from the prohibitively expensive (R)-*t*-leucine.

© 2015 Elsevier Ltd. All rights reserved.

enable the formation of the corresponding products with the best enantiomeric and diastereomeric ratios. Although (R)-t-BuPHOX has been employed in natural product synthesis¹⁵ and explored in transition-metal catalyzed allylic alkylations,^{10a,16} these examples are quite rare considering the nearly prohibitive cost of the requisite starting material for ligand synthesis, (R)-t-leucine.¹⁷ Previously, 5,5-geminally disubstituted (R)-valinederived PHOX ligands (e.g. (R)-L3 and (R)-L4, Fig. 2) have been constructed as cost-effective alternatives to (R)-t-BuPHOX ((R)-L2).¹⁸ We sought to extend this precedent to the synthesis of electronically modified congener (R)-5,5-dimethyl-(p-CF₃)₃-i-PrPHOX ((R)-(p-CF₃)₃-i-PrPHOX^{Me2}, (R)-L5, Fig. 2) and explore its efficacy as a ligand in palladium-catalyzed enantio- and diastereoselective allylic alkylation reactions.

Results and discussion

Synthesis of (R)-(p-CF₃)₃-*i*-PrPHOX^{Me2} ((R)-L5)

Synthesis of (R)-(p-CF₃)₃-*i*-PrPHOX^{Me2} ((R)-L5) was initiated with acid chloride **11**¹⁹ and the hydrogen chloride salt of (R)-valine derivative **12**¹⁸ (Scheme 3). Intermolecular coupling of acid chloride **11** and amino alcohol **12** in the presence of excess Et₃N provides amide **13** in 79% yield. Intramolecular cyclization of amide **13** under acidic conditions furnishes oxazoline **14** in 87% yield.

^{*} Corresponding author. Tel.: +1 626 395 6064; fax: +1 626 395 8436. *E-mail address:* stoltz@caltech.edu (B.M. Stoltz).

R. A. Craig II, B. M. Stoltz/Tetrahedron Letters xxx (2015) xxx-xxx

Figure 1. Electronically modified and unmodified (*S*)-*t*-BuPHOX ligands.

Completion of desired ligand (**R**)-**L5** was accomplished over two steps, beginning with the copper-mediated coupling of phosphine oxide **15** with bromide **14** at elevated temperature.²⁰ This procedure produces phosphine oxide **16** in 63% yield. Reduction of phosphine oxide **16** was subsequently accomplished in neat Ph ₂SiH₂ at 140 °C over 48 hours, providing the desired ligand (*R*)-(*p*-CF₃)₃-*i*-PrPHOX^{Me2} ((*R*)-**L5**) in 81% yield in the final step of the synthetic sequence.

Scheme 1. Comparison of electronically modified (S)-(p-CF₃)₃-t-BuPHOX ((S)-L1) and unmodified (S)-t-BuPHOX ((S)-L2) in intramolecular palladium-catalyzed enantioselective allylic alkylation.

Figure 2. 5,5-Geminally disubstituted (R)-valine-derived PHOX ligands.

Scheme 2. Comparison of electronically modified (S)-(p-CF₃)₃-t-BuPHOX ((S)-L1) and unmodified (S)-t-BuPHOX ((S)-L2) in diastereoselective decarboxylative alkylation cascade.

Please cite this article in press as: Craig II, R. A.; Stoltz, B. M. Tetrahedron Lett. (2015), http://dx.doi.org/10.1016/j.tetlet.2015.06.039

R. A. Craig II, B. M. Stoltz/Tetrahedron Letters xxx (2015) xxx-xxx

0

Scheme 3. Synthesis of (R)-(p-CF₃)₃-*i*-PrPHOX^{Me2} ((R)-L5).

5

(Ŕ)-L5

Use of $(R)-(p-CF_3)_3-i-PrPHOX^{Me2}$ in palladium-catalyzed asymmetric transformations

CF₃

11

MsOH CH₂Cl₂

→ reflux 17 h

0°C

HCI-H

12

Β̈́r

Application of (R)-(p-CF₃)₃-*i*-PrPHOX^{Me2} ((**R**)-L5) was initially explored in the intermolecular palladium-catalyzed enantioselective allylic alkylation of silyl enol ether 17 with mesylate 18 (Scheme 4). Previously we disclosed the initial development and optimization of this transformation using (S)-t-BuPHOX ((S)-L2), which afforded chloroallylketone (S)-19 in 82% yield and 92% ee (entry 1).^{12d} Substitution of (**S**)-L2 with the electronically modified $(S)-(p-CF_3)_3-t$ -BuPHOX ((S)-L1) provided the product ((S)-19) in a slightly diminished 91% ee (entry 2). Switching the ligand to (S)-5,5-diphenyl-*i*-PrPHOX ((S)-L3) furnished chloroallylketone (S)-19 in 90% ee (entry 3). Moving into the opposite enantiomeric series, the use of (R)-5,5-dimethyl-i-PrPHOX ((R)-L4) provided chloroallylketone (R)-19 in a somewhat diminished 89% ee (entry 4) compared to the originally optimized reaction conditions (entry 1). Alternatively, we were pleased to find that $(R)-(p-CF_3)_3-i-PrPHOX^{Me2}$ ((**R**)-L5) afforded chloroallylketone (**R**)-19 in the same 91% ee (entry 5) in the opposite enantiomeric series compared to the use of (S)-(p-CF₃)₃-t-BuPHOX (entry 2). It is noteworthy that the required reaction time (20 h) and isolated yield (80-82%) of chloroallylketone 19 were independent of the ligand employed. Thus, $(R)-(p-CF_3)_3-i-PrPHOX^{Me2}$ ((**R**)-L5) can allow access to the enantiomeric series of products to those afforded in reactions employing (S)-L1 without any loss in product ee in a costeffective manner, being derived from (R)-valine, which is less than 2% of the cost of (R)-t-leucine.

The utility of (R)-(p-CF₃)₃-i-PrPHOX^{Me2} ((R)-L5) was further demonstrated in the intermolecular palladium-catalyzed diastereoselective decarboxylative allylic alkylation of β-ketoester 20 with allyl electrophile **21** (Scheme 5).^{16a} While the system displays an

^a Cost per gram of amino acid from Sigma-Aldrich, accessed 4/30/2015. ^b Enantiomeric excess (ee) measured by analytical chiral GC.

0.60

6

91

Valine

Scheme 4. Ligand comparison in enantioselective palladium-catalyzed intermolecular allylic alkylation.

inherent selectivity for the formation of diastereomer 22 in a 2:1 ratio with diastereomer 23 when achiral PHOX ligand L6 was employed (entry 1),²¹ the use of (*S*)-*t*-BuPHOX ((*S*)-L2) can override this substrate bias, providing diastereomer 23 as the major product (entry 2). Comparatively, the use of (R)-t-BuPHOX ((R)-L2) reinforces the inherent selectivity, providing diastereomer 22 in a 12:1 ratio with minor diastereomer 23 in a combined 73% yield (entry 3). Pleasingly, the employment of (R)-(p-CF₃)₃-i-PrPHOX^{Me2} ((**R**)-L5) further improved this transformation, furnishing an 18:1 mixture of products in favor of diastereomer 22 in an improved 85% combined yield (entry 4). These studies revealed that $(R)-(p-CF_3)_3-i-PrPHOX^{Me2}$ ((**R**)-L5) was the optimal ligand for the highly diastereoselective formation of allylic alkylation product

Please cite this article in press as: Craig II, R. A.; Stoltz, B. M. Tetrahedron Lett. (2015), http://dx.doi.org/10.1016/j.tetlet.2015.06.039

R. A. Craig II, B. M. Stoltz/Tetrahedron Letters xxx (2015) xxx-xxx

¹H NMR analysis of the crude reaction mixture and analytical GC analysis

Scheme 5. Diastereoselective decarboxylative allylic alkylation employing (R)-(p-CF₃)₃-i-PrPHOX^{Me2} ((R)-L5).

22. Additionally, other research groups have found (R)-(p-CF₃)₃-*i*-PrPHOX^{Me2} ((*R*)-L5) to be a uniquely effective ligand for the palladium-catalyzed diastereoselective allylic alkylation of other carbocyclic substrates.²²

Conclusion

Herein, we have disclosed the synthesis of a new, electronically modified phosphinooxazoline (PHOX) ligand, (*R*)-5,5-dimethyl-(*p*-CF₃)₃-*i*-PrPHOX ((*R*)-(*p*-CF₃)₃-*i*-PrPHOX^{Me2}, (*R*)-L5). Derived from (*R*)-valine, this cost-effective alternative to (*R*)-(*p*-CF₃)₃-*t*-BuPHOX ((*R*)-L1) has proved effective in both palladium-catalyzed enantioand diastereoselective allylic alkylations, furnishing the alkylation products in comparable ee and improved diastereomeric ratio. Efforts to further explore the utility of the readily available (*R*)-(*p*-CF₃)₃-*i*-PrPHOX^{Me2} ligand in palladium-catalyzed stereoselective transformations are currently underway.

Acknowledgements

The authors wish to thank the NIH-NIGMS (R01GM080269), Amgen, the Gordon and Betty Moore Foundation, and Caltech for financial support. R.A.C. gratefully acknowledges the support of this work provided by a fellowship from the National Cancer Institute of the National Institutes of Health under Award Number F31A17435.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2015.06. 039.

References and notes

- 1. Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769.
- Dawson, G. J.; Frost, C. G.; Williams, J. M. J.; Coote, S. J. Tetrahedron Lett. 1993, 34, 3149–3150.
- 3. Von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 566–568.
- (a) Carroll, M. P.; Guiry, P. J. Chem. Soc. Rev. 2014, 43, 819–833; (b) Hargaden, G. C.; Guiry, P. J. Chem. Rev. 2009, 109, 2505–2550; (c) McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151–4202; (d) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336–345; (e) Williams, J. M. Synlett 1996, 705–710.
- (a) Verendel, J. J.; Pàmies, O.; Diéguez, M.; Andersson, P. G. Chem. Rev. 2014, 114, 2130–2169; (b) Braunstein, P.; Graiff, C.; Naud, F.; Pfaltz, A.; Tiripicchio, A. Inorg. Chem. 2000, 39, 4468–4475.
- 6. Stohler, R.; Wahl, F.; Pfaltz, A. Synthesis 2005, 1431-1436.
- 7. (a) Gilbertson, S. R.; Fu, Z. Org. Lett. **2001**, 3, 161–164; (b) Hashimoto, Y.; Horie, Y.; Hayashi, M.; Saigo, K. Tetrahedron: Asymmetry **2000**, *11*, 2205–2210.

- (a) Frölander, A.; Moberg, C. Org. Lett. 2007, 9, 1371–1374; (b) Sudo, A.; Yoshida, H.; Saigo, K. Tetrahedron: Asymmetry 1997, 8, 3205–3208.
- (a) Liu, Y.; Liniger, M.; McFadden, R. M.; Roizen, J. L.; Malette, J.; Reeves, C. M.; Behenna, D. C.; Seto, M.; Kim, J.; Mohr, J. T.; Virgil, S. C.; Stoltz, B. M. *Beilstein J. Org. Chem.* **2014**, *10*, 2501–2512; (b) Behenna, D. C.; Mohr, J. T.; Sherden, N. H.; Marinescu, S. C.; Harned, A. M.; Tani, K.; Seto, M.; Ma, S.; Novák, Z.; Krout, M. R.; McFadden, R. M.; Roizen, J. L.; Enquist, J. A., Jr.; White, D. E.; Levine, S. R.; Petrova, K. V.; Iwashita, A.; Virgil, S. C.; Stoltz, B. M. *Chem. Eur. J.* **2011**, *17*, 14199–14223; (c) García-Yebra, C.; Janssen, J. P.; Rominger, F.; Helmchen, G. *Organometallics* **2004**, *23*, 5459–5470.
- (a) Doran, R.; Carroll, M. P.; Akula, R.; Hogan, B. F.; Martins, M.; Fanning, S.; Guiry, P. J. Chem. Eur. J. **2014**, 20, 15354–15359; (b) Carroll, M. P.; Müller-Bunz, H.; Guiry, P. J. Chem. Commun. **2012**, 11142–11144; (c) Marinescu, S. C.; Nishimata, T.; Mohr, J. T.; Stoltz, B. M. Org. Lett. **2008**, *10*, 1039–1042; (d) Mohr, J. T.; Nishimata, T.; Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. **2006**, *128*, 11348–11349.
- (a) Numajiri, Y.; Pritchett, B. P.; Chiyoda, K.; Stoltz, B. M. J. Am. Chem. Soc. 2015, 137, 1040–1043; (b) Reeves, C. M.; Behenna, D. C.; Stoltz, B. M. Org. Lett. 2014, 16, 2314–2317; (c) Reeves, C. M.; Eidamshaus, C.; Kim, J.; Stoltz, B. M. Angew. Chem., Int. Ed. 2013, 52, 6718–6721; (d) Enquist, J. A., Jr.; Stoltz, B. M. Nature 2008, 453, 1228–1231; (e) Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2005, 44, 6924–6927; (f) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044–15045.
- (a) Numajiri, Y.; Jiménez-Osés, G.; Wang, B.; Houk, K. N.; Stoltz, B. M. Org. Lett.
 2015, 17, 1082–1085; (b) Korch, K. M.; Eidamshaus, C.; Behenna, D. C.; Nam, S.; Horne, D.; Stoltz, B. M. Angew. Chem., Int. Ed. 2015, 54, 179–183; (c) Bennett, N. B.; Duquette, D. C.; Kim, J.; Liu, W.-B.; Marziale, A. N.; Behenna, D. C.; Virgil, S. C.; Stoltz, B. M. Chem. Eur. J. 2013, 19, 4414–4418; (d) Craig, R. A., II; Roizen, J. L.; Smith, R. C.; Jones, A. C.; Stoltz, B. M. Org. Lett. 2012, 14, 5716–5719; (e) Behenna, D. C.; Liu, Y.; Yurino, T.; Kim, J.; White, D. E.; Virgil, S. C.; Stoltz, B. M. Nat. Chem. 2012, 4, 130–133; (f) Seto, M.; Roizen, J. L.; Stoltz, B. M. Angew. Chem., Int. Ed. 2008, 47, 6873–6876.
- (a) McDougal, N. T.; Streuff, J.; Mukherjee, H.; Virgil, S. C.; Stoltz, B. M. *Tetrahedron Lett.* 2010, *51*, 5550–5554; (b) White, D. E.; Stewart, I. C.; Grubbs, R. H.; Stoltz, B. M. *J. Am. Chem. Soc.* 2008, *130*, 810–811; (c) Tani, K.; Behenna, D. C.; McFadden, R. M.; Stoltz, B. M. Org. Lett. 2007, *9*, 2529–2531.
- 14. Streuff, J.; White, D. E.; Virgil, S. C.; Stoltz, B. M. Nat. Chem. 2010, 2, 192–196.
- (a) Day, J. J.; McFadden, R. M.; Virgil, S. C.; Kolding, H.; Alleva, J. L.; Stoltz, B. M. Angew. Chem., Int. Ed. 2011, 50, 6814–6818; (b) Levine, S. R.; Krout, M. R.; Stoltz, B. M. Org. Lett. 2009, 11, 289–292; (c) Petrova, K. V.; Mohr, J. T.; Stoltz, B. M. Org. Lett. 2009, 11, 293–295.
- (a) Liu, W.-B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 10626–10629; (b) Fang, X.; Johannsen, M.; Yao, S.; Gathergood, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 1999, 64, 4844–4849.
- 17. The cost of (*R*)-*t*-leucine ranges between \$350 and \$400 per gram, depending on the size of the order from Sigma-Aldrich, as advertised on their sigmaaldrich.com, accessed 30 April, 2015. The synthesis of *t*-BuPHOX ligands, however, can be accomplished with ease on large scale, see: Mohr, J. T.; Krout, M. R.; Stoltz, B. M. Org. Synth. **2009**, 86, 194–211.
- (a) Bélanger, É.; Pouliot, M.-F.; Courtemanche, M.-A.; Paquin, J.-F. J. Org. Chem. 2012, 77, 317–331; (b) Bélanger, É.; Pouliot, M.-F.; Paquin, J.-F. Org. Lett. 2009, 11, 2201–2204.
- 19. Acid chloride **11** was synthesized in two steps from 2-bromo-5-(trifluoromethyl)benzonitrile by a known procedure, see: Ref. 13b.
- 20. The procedure for the coupling of phosphine oxide **15** with oxazoline **14** and sequential reduction was adapted from Ref. 13a.
- 21. Control experiments were performed using achiral PHOX ligand **L6**, bearing no substituent on the oxazoline ring, see Ref. 16a for full details.
- 22. Professor Stephen F. Martin, University of Texas at Austin, personal communication.