Total Synthesis and Characterization of 7-Hypoquinuclidonium Tetrafluoroborate and 7-Hypoquinuclidone BF₃ Complex

Marc Liniger, David G. VanderVelde, Michael K. Takase, Mona Shahgholi, and

Brian M. Stoltz*

Division of Chemistry and Chemical Engineering, California Institute of Technology

1200 East California Boulevard, MC 101-20, Pasadena, CA 91125, USA

Table of Contents

Materials and Methods	S	2
Preparative Procedures	S	4
NMR Spectra	S	15
IR Spectra	S	52
Mass Spectra	S	55
X-ray Structure Determination	S	67
Kinetic Experiments	S	87
DFT Calculations	S	95
References	S 1	115

Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. All commercially obtained reagents were used as received unless specified otherwise. Triethylamine was distilled from calcium hydride prior to use. Reaction temperatures were controlled using an IKAmag temperature modulator. Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 60 F254 pre-coated plates (0.25 mm) and visualized using UV at 254 nm or potassium permanganate. TLC data include R_f and eluent. ICN silica gel (particle size 0.032-0.063 mm), SilliaFlash P60 Academic silica gel (0.040-0.063 mm), or Florisil (Aldrich) was used for flash column chromatography. All NMR spectra were recorded on Varian 400, 500 or 600 MHz spectrometers or on a Bruker 400 MHz spectrometer with a Prodigy broadband cryoprobe. ¹H NMR spectra are reported relative to the residual solvent peak (δ 7.26 ppm for CDCl₃ and 1.94 ppm for CD₃CN). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. ¹³C NMR spectra are reported relative to the residual solvent peak (δ 77.0 ppm for CDCl₃ and 1.32 ppm for CD₃CN). ¹¹B NMR spectra are reported relative to BF₃•OEt₂ (δ 0.0 ppm). ¹⁹F NMR spectra are reported relative to CFCl₃ (δ 0.0 ppm). ¹⁴N NMR spectra are reported relative to (CH₃)₄NI (δ 0.0 ppm). ¹⁵N NMR spectra are reported relative to ammonia NH₃ (δ 0.0 ppm). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = quartetpentet, m = multiplet, br = broad, app = apparent. IR spectra were recorded on a Perkin Elmer Spectrum BXII spectrometer or on a Fourier transform infrared ATR spectrometer (Thermo Scientific Nicolet iS5) with diamond ATR crystal (utilized iD5 ATR insert) and are reported in frequency of absorption (cm⁻¹). High resolution mass spectra (HRMS) were acquired with an Agilent 6200 Series TOF with Agilent G1978A Multimode source in mixed ionization mode (MM: ESI/APCI) or with a JEOL JMS-600H double-focusing magnetic sector mass spectrometer by fast atom bombardment (FAB) in the positive ion mode using thioglycerol as FAB matrix. The FAB⁺-MS was externally calibrated with PEG polymer in the Voltage scan mode. A drop of sample (kept in vial) was added to the probe tip and analyzed immediately. Samples for low resolution LTQ-MS were dissolved in anhydrous acetonitrile and analyzed by direct infusion electrospray ionization (ESI) using an LTQ linear ion trap mass spectrometer (Thermo) in the positive ion mode. Collision-induced-dissociation (CID) was performed on ions of interest. Melting points were determined on a Thomas-Hoover melting point apparatus and are uncorrected.

MacSPARTAN 10 was used to perform all DFT calculations at the 6-311+G** level.

Preparative Procedures

Hydroxy ketone 6. To a solution of cyclobutanone N_{N} -dimethylhydrazone¹ (5) (200 mg, 1.78 mmol, 1.0 equiv) in THF (3 mL) was added at 0 °C n-BuLi (0.78 mL, 1.96 mmol, 1.1 equiv, 2.5 M solution in hexanes). After stirring for 1 h at that temperature, a yellow suspension was formed. Then, a solution of 2-bromo-1-tert-butyldimethylsilyloxy ethane² (S1) (469 mg, 1.96 mmol, 1.1 equiv) in THF (2.0 mL) was added dropwise at -78 °C. After stirring for 15 min at 0 °C, the reaction mixture was allowed to warm slowly to rt in the ice bath over 15 h. Then, 2 M HCl (3.6 mL) was added at rt. After stirring vigorously for 1 h at rt, Et₂O (25 mL) and water (10 mL) were added and the layers were separated. The aqueous layer was extracted with Et_2O (2 x 25 mL). The combined organic extracts were dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by column chromatography (pentane/Et₂O, $1:1 \rightarrow 1:2 \rightarrow 1:3 \rightarrow Et_2O$) to afford 2-(2-hydroxyethyl) cvclobutanone (6) (93.4 mg, 45%) as a colorless liquid.³ $R_f = 0.39$ (Et₂O); ¹H NMR (500 MHz, CDCl₃): δ 3.81-3.56 (m, 2H), 3.52-3.29 (m, 1H), 3.17-2.99 (m, 1H), 2.99-2.83 (m, 1H), 2.57 (brs, 1H), 2.33-2.12 (m, 1H), 2.00-1.56 (m, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 212.9, 60.8, 58.1, 44.2, 32.5, 16.5; IR (NaCl): 3418br, 2931, 2880, 1771, 1393, 1287, 1243, 1202, 1057, 941 cm⁻¹; HRMS (FAB+) m/z calc'd for $C_6H_{10}O_2 [M+H]^+$: 115.0759, found 115.0767.

Tosylate 7. To a solution of alcohol 6 (93.0 mg, 0.81 mmol, 1.0 equiv) in CH₂Cl₂ (1 mL) was added at 0 °C triethylamine (0.17 mL, 1.22 mmol, 1.5 equiv) followed by p-toluenesulfonyl chloride (171 mg, 0.90 mmol, 1.1 equiv). After stirring for 12 h at rt, the heterogeneous reaction mixture was guenched with 1 M NaOH (10 mL) and diluted with CH₂Cl₂ (15 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 15 mL). The combined organic extracts were dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, $4:1 \rightarrow 2:1$) to afford 7 (204 mg, 93%) as a colorless liquid. $R_f = 0.35$ (hexane/EtOAc, 2:1); ¹H NMR (500 MHz, CDCl₃): δ 7.78 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 4.17-4.04 (m, 2H), 3.44-3.31 (m, 1H), 3.08 (dddd, J = 17.7, 10.7, 8.2, 2.6 Hz, 1H), 2.90 (dddd, J = 17.6, 9.5, 4.8, 2.7 Hz, 1H), 2.46 (s, 3H), 2.21 (app qd, J = 10.7, 4.8 Hz, 1H), 2.04 (app dq, J = 14.5, 6.3 Hz, 1H), 1.86 (ddt, J =14.7, 8.5, 6.5 Hz, 1H), 1.66 (ddt, J = 11.2, 9.6, 8.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 209.8, 144.9, 132.8, 129.9, 127.9, 68.1, 56.3, 44.9, 28.7, 21.7, 16.8; IR (NaCl): 3534, 2960, 2927, 1778, 1598, 1495, 1455, 1354, 1307, 1293, 1177, 1097, 1032, 943, 817, 773 cm⁻¹; HRMS (FAB+) m/z calc'd for C₁₃H₁₆O₄S [M+H]⁺: 269.0848, found 269.0844.

Azide 8. To a solution of tosylate 7 (1.375 g, 5.12 mmol, 1.0 equiv) in dry DMF (10 mL) was added at rt sodium azide (366 mg, 5.64 mmol, 1.1 equiv). After stirring for 3 h at 70 °C, the reaction mixture was diluted with Et_2O (50 mL) and filtered over Celite. The filter cake was washed with Et_2O (3 x 40 mL). The combined organic filtrates were washed with water (3 x 25 mL), brine (25 mL), dried over MgSO₄ and the solvent was removed under reduced pressure.

The residue was purified by column chromatography (hexane/Et₂O, 4:1 \rightarrow 3:1) to afford azide **8** (623 mg, 87%) as a colorless liquid. R_f = 0.59 (hexane/EtOAc, 2:1); ¹H NMR (500 MHz, CDCl₃): δ 3.48-3.32 (m, 3H), 3.11 (dddd, *J* = 17.7, 10.7, 8.1, 2.6 Hz, 1H), 2.96 (dddd, *J* = 17.5, 9.6, 4.9, 2.7 Hz, 1H), 2.27 (app qd, *J* = 10.6, 4.9 Hz, 1H), 1.99 (app dq, *J* = 13.6, 6.8 Hz, 1H), 1.79 (ddt, *J* = 14.1, 8.3, 7.1 Hz, 1H), 1.71 (ddt, *J* = 11.2, 9.6, 7.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 210.4, 57.4, 49.2, 44.8, 28.8, 16.8; IR (NaCl): 3535, 3334, 2932, 2877, 2516, 2098, 1776, 1456, 1393, 1348, 1259, 1202, 1122, 1086, 1036, 905 cm⁻¹; HRMS (FAB+) m/z calc'd for C₆H₉N₃O [M+H]⁺: 140.0824, found 140.0833.

N-Tosyl piperidine 4-carboxylic acid methyl ester 9. To a solution of azide 8 (20.0 mg, 0.14 mmol, 1.0 equiv) in CH₂Cl₂ (1.2 mL) was added at 0 °C a predried stock solution of trifluoroacetic acid (0.26 mL, calcd. 16.5 μ L, 0.22 mmol, 1.5 equiv) in CH₂Cl₂ (over 4Å molecular sieves, 0.1 mL TFA was dissolved in 1.5 mL CH₂Cl₂). After stirring for 30 min, neither conversion of the starting material was observed according to TLC nor evolution of nitrogen. Then, a predried stock solution of triflic acid (0.25 mL, calcd. 14.1 μ L, 0.22 mmol, 1.5 equiv) in CH₂Cl₂ (over 4Å molecular sieves, 0.1 mL TfOH was dissolved in 1.2 mL CH₂Cl₂) was added at rt and stirring was continued for 30 min at rt and for 1 h at 38 °C. Since keto azide 8 was still not fully consumed, more of the triflic acid stock solution (0.25 mL, calcd. 14.1 μ L, 0.22 mmol, 1.5 equiv) was added. After stirring for 16 h at 38 °C, the solvent had evaporated. The orange residue was redissolved in CH₂Cl₂ (1.2 mL). The starting material was fully

consumed and a new polar spot was observed according to TLC (*n*-BuOH/H₂O/EtOAc/AcOH, 1:1:1:1, blue/purple with ninhydrin, the intermediate will be hydrolyzed by the water in the TLC solvent mixture to the corresponding amino acid). MeOH (1.2 mL) was added at rt to the reaction mixture and stirring was continued for 1 h at that temperature. Since it was unclear according to TLC, if the intermediate $4 \cdot H^+$ was hydrolyzed with MeOH and, moreover, if the corresponding amino acid had been formed in the reaction mixture with traces of water as well, thionyl chloride (42.0 µL, 0.57 mmol, 4.0 equiv) was added dropwise at 0 °C in order to assure acid catalyzed esterification of the amino acid mediated by *in situ* formed dry HCl. The reaction mixture was stirred at 55 °C for 17 h, concentrated under reduced pressure and the residue was dried under high vacuum (TLC *n*-BuOH/H₂O/EtOAc/AcOH, 1:1:1:1, dark purple spot with ninhydrin).

To a solution of the orange/red crude residue in CH₂Cl₂ (2.4 mL) was added at rt triethylamine (0.40 mL, 2.87 mmol, 20 equiv), DMAP (1.8 mg, 10 mol%) followed by TsCl (82.2 mg, 0.43 mmol, 4.0 equiv). After stirring at rt for 5.5 h, the reaction mixture was quenched with sat. NaHCO₃ (10 mL) and extracted with EtOAc (3 x 20 mL). The combined organic extracts were dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, $5:1 \rightarrow 4:1 \rightarrow 3:1 \rightarrow 2:1 \rightarrow 1:1$) to afford **9** (24.1 mg, 56%) as a beige, crystalline solid.⁴ X-ray quality crystals were obtained at rt by slow diffusion of heptane (with a few drops of benzene) into a solution of **9** in EtOAc. R_f = 0.11 (hexane/EtOAc, 4:1); R_f = 0.55 (hexane/EtOAc, 1:1); ¹H NMR (500 MHz, CDCl₃): δ 7.63 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 3.66 (s, 3H), 3.63 (dt, *J* = 11.9, 4.0 Hz, 2H), 2.50-2.39 (m, 2H), 2.44 (s, 3H), 2.26 (tt, *J* = 10.7, 4.0 Hz, 1H), 2.02-1.92 (m, 2H), 1.81 (dtd, *J* = 14.4, 10.8, 4.0 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 174.3, 143.6, 133.0, 129.6, 127.6, 51.9, 45.4, 39.9,

27.4, 21.5; IR (KBr): 2932, 2845, 1726, 1596, 1437, 1350, 1336, 1291, 1250, 1204, 1161, 1120, 1094, 1043, 986, 933, 818, 730 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for $C_{14}H_{19}NO_4S$ [M+H]⁺: 298.1108, found 298.1094; mp 127-128 °C; LC-MS (ESI+): m/z: 298.1 [M+H]⁺, 320.1 [M+Na]⁺. The X-ray structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC) under the deposition number 1435049.

Figure 1: X-ray structure of 9 (ellipsoids, 50% probability level).

Dimer: LC-MS (ESI+): m/z calc'd and found for C₂₀H₂₈N₂O₅S: 409.2 [M+H]⁺, 431.2 [M+Na]⁺.

Trimer: LC-MS (ESI+): m/z calc'd and found for $C_{26}H_{37}N_3O_6S$: 520.3 [M+H]⁺, 542.3 [M+Na]⁺.

Structural confirmation of 9 by chemical synthesis:

N-Tosyl piperidine 4-carboxylic acid methyl ester 9. To a solution of 1-tosyl-4-piperidinecarboxylic acid⁵ (S2) (202 mg, 0.71 mmol, 1.0 equiv) in a 1:1 mixture of toluene (3.0 mL) and MeOH (3.0 mL) was added dropwise at 0 °C TMS diazomethane (1.07 mL, 2.14 mmol, 3.0 equiv). After stirring for 11 h at rt, the colorless reaction mixture was quenched with a few drops of a 10:1 mixture of MeOH/AcOH until the solution discolored completely. The reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 3:1 \rightarrow 1:1) to afford 9 (201 mg, 95%) as a colorless, crystalline solid. The analytical data were identical to those reported above (*vide supra*). $R_f = 0.55$ (hexane/EtOAc, 1:1).

7-Hypoquinuclidone tetrafluoroborate 4•HBF₄ and 7-hypoquinuclidone BF₃ complex 4•BF₃. To a solution of keto azide 8 (52.0 mg, 0.37 mmol, 1.0 equiv) in Et₂O (0.75 mL) was added at 0 °C HBF₄ (0.10 mL, 0.71 mmol, 1.9 equiv, 50-54% wt/wt in Et₂O). Gas evolution was observed immediately. After stirring for 1 h at rt, the starting material was fully consumed and a colorless precipitate was formed. The solvent was decanted off with a syringe under argon. The solids were washed with Et₂O (3 x 0.8 mL) and dried under high vacuum to afford 4•HBF₄

(72.0 mg, 97% mass recovery) as a colorless solid. When solid **4•HBF**₄ was dissolved in dry CD₃CN, a mixture of **4•HBF**₄ / **11** / **4•BF**₃ in a ratio of 77%/15%/12% was observed by ¹H-NMR spectroscopy. Slow diffusion of Et₂O into a solution of **4•HBF**₄ in acetonitrile at -40 °C over four weeks yielded one single crystal of 7-hypoqunuclidone BF₃ complex **4•BF**₃ (2.0 mg, 3%) as a colorless needle.

Analytical data for **4**•**HBF**₄:

¹H NMR (400 MHz, CD₃CN): δ 7.76 (t, ¹*J*_{1H14N} = 63 Hz, 1H), 3.85-3.68 (m, 2H), 3.41 (td, *J* = 11.2, 5.1 Hz, 2H), 2.87 (brs, 1H), 2.37 (mc, 2H), 2.07 (td, *J* = 11.7, 5.3 Hz, 2H); ¹H{¹⁴N} NMR (500 MHz, CD₃CN): δ 7.76 (s, 1H), 3.88-3.71 (m, 2H), 3.52-3.37 (m, 2H), 2.89 (brs, 1H), 2.46-2.34 (m, 2H), 2.09 (td, *J* = 11.8, 5.6 Hz, 2H); ¹³C NMR (126 MHz, CD₃CN): δ 174.7, 47.8, 32.3, 22.8; ¹¹B NMR (128 MHz, CD₃CN): δ -1.2 (s); ¹⁹F NMR (376 MHz, CD₃CN): δ -151.3 (s); ¹⁴N NMR (36 MHz, CD₃CN): δ 34.8 (d, ¹*J*_{14N1H} = 62.8 Hz); ¹⁴N{¹H} NMR (36 MHz, CD₃CN): δ 34.8 (d, ¹*J*_{14N1H} = 62.8 Hz); ¹⁴N{¹H} NMR (36 MHz, CD₃CN): δ 34.8 (s); ¹⁵N NMR (41 MHz, CD₃CN): δ 78.6 (*J*_{1H15N} = ~88 Hz); ¹⁵N{¹H} NMR (41 MHz, CD₃CN): δ 78.6; IR (ATR): 3224, 1877 (C=O), 1493, 1472, 1363, 1288, 1180, 1125, 1031br (B-F), 992, 966, 868, 783, 679, 606, 520, 475 cm⁻¹; HRMS (EF FAB+)⁶ m/z calc'd for C₆H₉NO [M+H]⁺: 112.0762, found 112.0764.

Analytical data for **4**•**BF**₃:

¹H NMR (400 MHz, CD₃CN): δ 3.55 (td, J = 11.3, 5.6 Hz, 2H), 3.18 (td, J = 11.4, 5.0 Hz, 2H), 2.70 (t, J = 4.6 Hz, 1H), 2.24 (m_c, 2H), 1.96-1.83 (m, 2H, overlapping with CD₃CN); ¹³C NMR (101 MHz, CD₃CN): δ 179.8, 49.2, 34.3, 22.7; ¹¹B NMR (128 MHz, CD₃CN): δ -0.3 (q, ¹ $J_{11B19F} = 13.8$ Hz); ¹⁹F NMR (376 MHz, CD₃CN): δ -154.93 (q, ¹ $J_{19F11B} = 13.9$ Hz); ¹⁴N NMR (36 MHz, CD₃CN): δ 39.3 (s); IR (ATR): 2990, 1860 (C=O), 1467, 1278, 1191, 1174, 1160, 1129, 1118, 1084, 1020, 948, 924, 884, 870, 813, 715, 667, 629, 548 cm⁻¹; HRMS (EF FAB+)⁷ m/z calc'd for C₆H₉BF₃NO [M–BF₃+H₂O+H]⁺: 130.0868, found 130.0898; HRMS (EF FAB+)⁷ m/z calc'd for C₆H₉BF₃NO [M–BF₃+H]⁺: 112.0762, found 112.0762; LTQ-CID-MS (ESI+): m/z 130.08 [M+H]⁺, 112.08 [M–H₂O+H]⁺, 84.08 [M–H₂O–CO +H]⁺. The X-ray structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC) under the deposition number 1435048.

Figure 2: X-ray structure of **4**•**BF**₃ (ellipsoids, 50% probability level, side view and view along the B-N-C-O axis).

Isonipecotic acid tetrafluoroborate 11. To a solution of keto azide **8** (67.7 mg, 0.49 mmol, 1.0 equiv) in Et₂O (1.0 mL) was added at 0 °C boron trifluoride diethyletherate (0.12 mL, 0.97 mmol, 2.0 equiv). After stirring for 2 h at rt, neither evolution of nitrogen nor formation of a precipitate was observed. Then, a catalytic amount of HBF₄ (0.02 mL, 0.14 mmol, 0.29 equiv, 50-54% wt/wt in Et₂O) was added at 0 °C, which led to immediate gas evolution and precipitation of a colorless solid. After stirring for 1 h at rt, there was still a lot of unreacted starting material present according to TLC. Therefore, more HBF₄ (0.06 mL, 0.43 mmol, 0.87 equiv, 50-54% wt/wt in Et₂O) was added at 0 °C (again gas evolution observed). After stirring for another hour at rt, the starting material was still not fully consumed (apparently a stoichiometric amount of acid is necessary, even more than 1 equivalent). Another portion of HBF₄ (0.05 mL, 0.36 mmol, 0.73 equiv, 50-54% wt/wt in Et₂O) was added at rt (gas evolution continued) and stirring was continued over night at rt (15 h). The starting material was fully consumed according to TLC and a colorless solid had precipitated. The solvent was removed with a syringe. The residue was washed with Et₂O (3 x 1.0 mL) and dried under high vacuum to afford the amino acid 11 along with 4•HBF₄ and an unknown compound S3 (the ratio of 11 / 4•HBF₄ / S3 is 73%/15%/12%; the BF₃ complex 4•BF₃ was not observed at all) as a colorless solid. When the crude product was dissolved in acetonitrile and stored over night at rt, compounds 4•HBF₄ and S3 fully converted to isonipecotic acid tetrafluoroborate 11. The

solvent was removed under reduced pressure to give **11** (91.4 mg, 87%) as a yellow oil.⁸ Two X-ray quality crystals were grown by overlaying a solution of **11** in CD₃CN with an excess of Et_2O in the NMR tube followed by slow evaporation of the solvents at rt over 2 month (closed NMR tube with a cap).

Analytical data for 11:

¹H NMR (500 MHz, CD₃CN): δ 6.90-6.12 (m, ¹*J*_{1H14N} = ~55 Hz, 1H), 3.40 (dt, *J* = 13.1, 3.5 Hz, 2H), 3.05 (m_c, 2H), 2.84 (tt, *J* = 10.7, 4.0 Hz, 1H), 2.17 (dd, *J* = 14.8, 4.0 Hz, 2H), 1.96-1.83 (m, 2H, overlapping with CD₃CN); ¹H{¹⁴N} NMR (500 MHz, CD₃CN): δ 6.72-6.58 (m, 1H), 6.50-6.35 (m, 1H), 3.41 (dt, *J* = 13.2, 3.5 Hz, 2H), 3.06 (m_c, 2H), 2.85 (tdd, *J* = 10.9, 5.8, 2.5 Hz, 1H), 2.17 (dd, *J* = 14.8, 4.0 Hz, 2H), 1.96-1.84 (m, 2H, overlapping with CD₃CN); ¹³C NMR (126 MHz, CD₃CN): δ 169.7, 44.4, 39.6, 24.7; ¹¹B NMR (128 MHz, CD₃CN): δ -1.2 (s); ¹⁹F NMR (376 MHz, CD₃CN): δ -151.2 (s); ¹⁴N NMR (36 MHz, CD₃CN): δ -4.9 (m, ¹*J*_{14N1H} coupling not resolved); ¹⁴N ¹H} NMR (36 MHz, CD₃CN): δ -5.0 (s); ¹⁵N NMR (41 MHz, CD₃CN): δ 38.8; IR (NaCl): 3625, 3233, 2952, 2814, 2725, 2502, 1814 (C=O), 1738, 1600, 1456, 1428, 1314, 1286, 1069br (B-F), 1021br (B-F), 958, 908, 844, 766 cm⁻¹; mp 124-138 °C; HRMS (MM: ESI-APCI+) m/z calc'd for C₆H₁₁NO₂ [M+H]⁺: 130.0868, found 130.0872; HRMS (EF FAB+)⁹ m/z calc'd for C₆H₁₁NO₂ [M+H]⁺: 112.0762, found 112.0758; LTQ-CID-MS (ESI+): m/z 130.08 [M+H]⁺, 112.08

 $[M-H_2O+H]^+$, 84.08 $[M-H_2O-CO +H]^+$. The X-ray structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC) under the deposition number 1435047.

Figure 3: X-ray structure of 11 (ellipsoids, 50% probability level).

NMR Spectra

¹H NMR (500 MHz, CDCl₃) of compound **7**.

¹³C NMR (126 MHz, CDCl₃) of compound **7.**

¹H NMR (500 MHz, CDCl₃) of compound **8**.

¹³C NMR (126 MHz, CDCl₃) of compound 8.

¹³C NMR (126 MHz, CDCl₃) of compound **9.**

¹³C NMR (101 MHz, CD₃CN) of compound **4**•**BF**₃.

¹⁴N NMR (36 MHz, CD₃CN) of compound **4**•**BF**₃.

¹³C NMR (126 MHz, CD₃CN) of compound **4**•**HBF**₄.

 ${}^{1}H{}^{14}N{}$ NMR (500 MHz, CD₃CN) of compound **4**•**HBF**₄.

¹⁴N NMR (36 MHz, CD₃CN) of compound **4**•**HBF**₄.

 $^{14}N{^{1}H}$ NMR (36 MHz, CD₃CN) of compound **4**•**HBF**₄.

¹H-¹⁵N hsqc (400 MHz and 41 MHz, CD₃CN) of compound **4**•**HBF**₄.

Superimposed ${}^{1}H{}^{15}N$ hsqc and ${}^{1}H{}^{15}N$ hsqc (400 MHz and 41 MHz, CD₃CN) of compound **4**•**HBF**₄.

¹H NMR (600 MHz, CD₃CN) of compound **4• HBF**₄ with 1,3,5-trichlorobenzene (internal standard).

Crude ¹H NMR (500 MHz, CD₃CN) of compound **11**.

Crude ¹³C NMR (126 MHz, CD₃CN) of compound **11**.

 $^1\mathrm{H}\{^{14}\mathrm{N}\}$ NMR (500 MHz, CD₃CN) of compound 11.

¹⁴N NMR (36 MHz, CD₃CN) of compound **11**.

 $^{14}N\{^{1}H\}$ NMR (36 MHz, CD₃CN) of compound **11**.

 $^1\text{H-}^{15}\text{N}$ hsqc (400 MHz and 41 MHz, CD₃CN) of compound **11**.

 $^1H\{^{15}N\}\text{-}^{15}N$ hsqc (400 MHz and 41 MHz, CD₃CN) of compound 11.

Superimposed ${}^{1}\text{H}-{}^{15}\text{N}$ hsqc and ${}^{1}\text{H}{}^{15}\text{N}$ - ${}^{15}\text{N}$ hsqc (400 MHz and 41 MHz, CD₃CN) of compound **11**.

IR Spectra

Mass Spectra

INSTRUMENT 1 12/15/2014 2:27:46 PM chen xu

COOMe

INSTRUMENT 1 12/15/2014 2:27:46 PM chen xu

Supporting Information for Liniger, VanderVelde, Takase, Shahgholi, and Stoltz

Selected Isotopes : C H N ₀₋₂ O ₀₋₃			Error Limit	Error Limit : 5 ppm		
<u>Measured</u> <u>Mass</u>	<u>% Base</u>	<u>Formula</u>	<u>Calculated</u> <u>Mass</u>	<u>Error</u>		
112.0764	5.9%	$C_6H_{10}NO$	112.0762	1.4		
130.0862	1.1%	$\mathrm{C_6H_{12}NO_2}$	130.0868	-4.6		

Base: m/z 91; 100%FS

TIC: 2289622 (Max Inten : 1048560) Х 91.0218 100-80-60-% 40-× 109.0314 20 112.0764 130.0862 0m/z 85 90 95 100 105 110 115 120 130 145 125 135 140

x this gly crol

m/z 85

145

÷

X-ray Structure Determination

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker Kappa diffractometer coupled to an Apex II CCD detector with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) for the structure of compound **9** and on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Mo K α radiation ($\lambda = 0.71073$ Å) or Cu K α radiation (l = 1.54178 Å) from an I μ S micro-source for the structure of compounds **4**•**BF**₃ and **11**, respectively. The structure was solved by direct methods using SHELXS¹⁰ and refined against F^2 on all data by full-matrix least squares with SHELXL-2013¹¹ using established refinement techniques.¹² All non-hydrogen atoms were refined anisotropically. Unless otherwise noted, all hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl groups).

Compound 9 crystallizes in the monoclinic space group $P2_1/n$ with one molecule in the asymmetric unit.

Table 1. Crystal data and structure refinement for 9.

Identification code	A15032		
CCDC Deposition Number	1435049		
Empirical formula	C14 H19 N O4 S		
Formula weight	297.36		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/n		
Unit cell dimensions	$a = 5.9734(4) \text{ Å} \qquad \alpha = 90^{\circ}.$		
	$b = 31.405(2) \text{ Å} \qquad \beta = 104.610(3)^{\circ}.$		
	$c = 8.2426(5) \text{ Å} \qquad \gamma = 90^{\circ}.$		
Volume	1496.27(17) Å ³		
Z	4		
Density (calculated)	1.320 Mg/m ³		
Absorption coefficient	0.228 mm ⁻¹		
F(000)	632		
Crystal size	0.200 x 0.200 x 0.100 mm ³		
Theta range for data collection	2.594 to 36.390°.		
index ranges -9<=h<=9, -52<=k<=51, -13<=			
Reflections collected	28938		
Independent reflections	7196 [R(int) = 0.0400]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7471 and 0.6913		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	7196 / 0 / 183		
Goodness-of-fit on F2	1.033		
Final R indices [I>2sigma(I)]	R1 = 0.0442, wR2 = 0.1024		
R indices (all data)	R1 = 0.0621, $wR2 = 0.1096$		

Extinction coefficient	n/a
Largest diff. peak and hole	0.552 and -0.392 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² x 10³) for **9**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
O(1)	6517(2)	5806(1)	9516(1)	20(1)
O(2)	9855(1)	5958(1)	8316(1)	18(1)
S(1)	7424(1)	5989(1)	8219(1)	13(1)
N(1)	6826(2)	6499(1)	8176(1)	13(1)
C(1)	4456(2)	6618(1)	8220(1)	17(1)
C(2)	4462(2)	7082(1)	8772(1)	18(1)
C(3)	5358(2)	7371(1)	7586(1)	15(1)
O(3)	5386(2)	7960(1)	9478(1)	28(1)
C(6)	5482(2)	7831(1)	8117(1)	16(1)
C(7)	6080(3)	8535(1)	7305(2)	28(1)
O(4)	5824(2)	8086(1)	6902(1)	25(1)
C(4)	7763(2)	7221(1)	7483(1)	16(1)
C(5)	7702(2)	6755(1)	6973(1)	16(1)
C(11)	5916(2)	5772(1)	6285(1)	13(1)
C(12)	6923(2)	5791(1)	4929(1)	16(1)
C(13)	5735(2)	5626(1)	3389(1)	20(1)
C(14)	3562(2)	5441(1)	3180(1)	19(1)
C(17)	2300(3)	5261(1)	1512(2)	29(1)
C(15)	2588(2)	5429(1)	4547(1)	20(1)
C(16)	3738(2)	5595(1)	6104(1)	17(1)

 Table 3. Bond lengths [Å] and angles [°] for 9.

1.4341(8)
1.4370(8)
1.6385(8)
1.7595(10)
1.4722(12)

N(1)-C(1)	1.4731(13)
C(1)-C(2)	1.5274(14)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-C(3)	1.5256(14)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(6)	1.5075(14)
C(3)-C(4)	1.5344(14)
C(3)-H(3)	1.0000
O(3)-C(6)	1.2066(13)
C(6)-O(4)	1.3370(13)
C(7)-O(4)	1.4486(14)
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(4)-C(5)	1.5201(13)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(11)-C(16)	1.3876(15)
C(11)-C(12)	1.3975(13)
C(12)-C(13)	1.3884(15)
C(12)-H(12)	0.9500
C(13)-C(14)	1.3923(17)
C(13)-H(13)	0.9500
C(14)-C(15)	1.3928(16)
C(14)-C(17)	1.5024(15)
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(15)-C(16)	1.3949(15)
C(15)-H(15)	0.9500
C(16)-H(16)	0.9500
O(1)-S(1)-O(2)	119.82(5)
O(1)-S(1)-N(1)	106.59(4)
O(2)-S(1)-N(1)	106.28(4)
O(1)-S(1)-C(11)	108.47(5)

O(2)-S(1)-C(11)	107.63(5)
N(1)-S(1)-C(11)	107.47(4)
C(5)-N(1)-C(1)	112.64(8)
C(5)-N(1)-S(1)	115.88(6)
C(1)-N(1)-S(1)	116.92(7)
N(1)-C(1)-C(2)	108.61(8)
N(1)-C(1)-H(1A)	110.0
C(2)-C(1)-H(1A)	110.0
N(1)-C(1)-H(1B)	110.0
C(2)-C(1)-H(1B)	110.0
H(1A)-C(1)-H(1B)	108.3
C(3)-C(2)-C(1)	110.57(8)
C(3)-C(2)-H(2A)	109.5
C(1)-C(2)-H(2A)	109.5
C(3)-C(2)-H(2B)	109.5
C(1)-C(2)-H(2B)	109.5
H(2A)-C(2)-H(2B)	108.1
C(6)-C(3)-C(2)	112.56(8)
C(6)-C(3)-C(4)	109.35(8)
C(2)-C(3)-C(4)	109.76(8)
C(6)-C(3)-H(3)	108.4
C(2)-C(3)-H(3)	108.4
C(4)-C(3)-H(3)	108.4
O(3)-C(6)-O(4)	123.28(10)
O(3)-C(6)-C(3)	125.45(10)
O(4)-C(6)-C(3)	111.21(8)
O(4)-C(7)-H(7A)	109.5
O(4)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
O(4)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(6)-O(4)-C(7)	115.96(9)
C(5)-C(4)-C(3)	110.62(8)
C(5)-C(4)-H(4A)	109.5
C(3)-C(4)-H(4A)	109.5
C(5)-C(4)-H(4B)	109.5
C(3)-C(4)-H(4B)	109.5
H(4A)-C(4)-H(4B)	108.1
N(1)-C(5)-C(4)	109.19(8)

N(1)-C(5)-H(5A)	109.8
C(4)-C(5)-H(5A)	109.8
N(1)-C(5)-H(5B)	109.8
C(4)-C(5)-H(5B)	109.8
H(5A)-C(5)-H(5B)	108.3
C(16)-C(11)-C(12)	120.83(9)
C(16)-C(11)-S(1)	120.31(7)
C(12)-C(11)-S(1)	118.85(8)
C(13)-C(12)-C(11)	119.39(10)
C(13)-C(12)-H(12)	120.3
C(11)-C(12)-H(12)	120.3
C(12)-C(13)-C(14)	120.95(10)
С(12)-С(13)-Н(13)	119.5
C(14)-C(13)-H(13)	119.5
C(13)-C(14)-C(15)	118.57(10)
C(13)-C(14)-C(17)	120.51(11)
C(15)-C(14)-C(17)	120.92(11)
C(14)-C(17)-H(17A)	109.5
C(14)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(14)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(14)-C(15)-C(16)	121.62(10)
C(14)-C(15)-H(15)	119.2
C(16)-C(15)-H(15)	119.2
C(11)-C(16)-C(15)	118.64(10)
C(11)-C(16)-H(16)	120.7
C(15)-C(16)-H(16)	120.7

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for **9**. The anisotropic displacement factor exponent takes the form: $-2p^2[\text{ h}^2 \text{ a}^{*2}\text{U}^{11} + ... + 2 \text{ h k a}^* \text{ b}^* \text{U}^{12}]$

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
0(1)	31(1)	18(1)	12(1)	2(1)	8(1)	-2(1)
O(2)	14(1)	18(1)	19(1)	-1(1)	1(1)	3(1)
S(1)	16(1)	13(1)	10(1)	0(1)	3(1)	0(1)
-------	-------	-------	-------	-------	-------	-------
N(1)	13(1)	13(1)	14(1)	0(1)	6(1)	0(1)
C(1)	14(1)	16(1)	24(1)	-3(1)	9(1)	-2(1)
C(2)	15(1)	17(1)	24(1)	-3(1)	9(1)	1(1)
C(3)	14(1)	14(1)	14(1)	-2(1)	2(1)	2(1)
O(3)	46(1)	20(1)	24(1)	-6(1)	19(1)	-1(1)
C(6)	15(1)	16(1)	16(1)	-1(1)	2(1)	3(1)
C(7)	46(1)	14(1)	23(1)	1(1)	6(1)	1(1)
O(4)	44(1)	14(1)	16(1)	1(1)	6(1)	2(1)
C(4)	17(1)	13(1)	19(1)	-1(1)	8(1)	0(1)
C(5)	19(1)	14(1)	17(1)	0(1)	10(1)	0(1)
C(11)	15(1)	12(1)	12(1)	0(1)	4(1)	1(1)
C(12)	19(1)	18(1)	14(1)	-1(1)	6(1)	0(1)
C(13)	26(1)	20(1)	12(1)	-1(1)	5(1)	2(1)
C(14)	24(1)	13(1)	16(1)	-2(1)	-3(1)	4(1)
C(17)	38(1)	22(1)	19(1)	-4(1)	-8(1)	4(1)
C(15)	16(1)	17(1)	23(1)	-2(1)	0(1)	0(1)
C(16)	16(1)	16(1)	19(1)	-1(1)	6(1)	-1(1)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **9**.

	Х	у	Z	U(eq)
H(1A)	3919	6432	9016	21
H(1B)	3392	6582	7094	21
H(2A)	2872	7169	8782	21
H(2B)	5458	7113	9924	21
H(3)	4281	7348	6443	17
H(7A)	4632	8645	7493	43
H(7B)	6451	8689	6372	43
H(7C)	7332	8575	8321	43
H(4A)	8291	7397	6652	19
H(4B)	8878	7259	8587	19
H(5A)	6683	6719	5832	19
H(5B)	9276	6659	6962	19
H(12)	8407	5916	5060	20
H(13)	6414	5640	2465	23
H(17A)	1950	5490	679	44

H(17B)	855	5128	1611	44
H(17C)	3272	5046	1159	44
H(15)	1104	5304	4416	23
H(16)	3044	5587	7021	20

 Table 6. Torsion angles [°] for 9.

O(1)-S(1)-N(1)-C(5)	177.31(7)
O(2)-S(1)-N(1)-C(5)	48.44(8)
C(11)-S(1)-N(1)-C(5)	-66.57(8)
O(1)-S(1)-N(1)-C(1)	-46.13(8)
O(2)-S(1)-N(1)-C(1)	-175.00(7)
C(11)-S(1)-N(1)-C(1)	69.99(8)
C(5)-N(1)-C(1)-C(2)	-61.35(11)
S(1)-N(1)-C(1)-C(2)	160.73(7)
N(1)-C(1)-C(2)-C(3)	57.90(11)
C(1)-C(2)-C(3)-C(6)	-177.81(9)
C(1)-C(2)-C(3)-C(4)	-55.77(11)
C(2)-C(3)-C(6)-O(3)	15.13(16)
C(4)-C(3)-C(6)-O(3)	-107.14(12)
C(2)-C(3)-C(6)-O(4)	-167.71(9)
C(4)-C(3)-C(6)-O(4)	70.02(11)
O(3)-C(6)-O(4)-C(7)	0.00(17)
C(3)-C(6)-O(4)-C(7)	-177.23(10)
C(6)-C(3)-C(4)-C(5)	179.18(8)
C(2)-C(3)-C(4)-C(5)	55.25(11)
C(1)-N(1)-C(5)-C(4)	61.13(11)
S(1)-N(1)-C(5)-C(4)	-160.49(7)
C(3)-C(4)-C(5)-N(1)	-56.91(11)
O(1)-S(1)-C(11)-C(16)	21.84(10)
O(2)-S(1)-C(11)-C(16)	152.85(8)
N(1)-S(1)-C(11)-C(16)	-93.05(9)
O(1)-S(1)-C(11)-C(12)	-159.84(8)
O(2)-S(1)-C(11)-C(12)	-28.82(9)
N(1)-S(1)-C(11)-C(12)	85.28(9)
C(16)-C(11)-C(12)-C(13)	-0.73(15)
S(1)-C(11)-C(12)-C(13)	-179.05(8)
C(11)-C(12)-C(13)-C(14)	-0.22(16)

C(12)-C(13)-C(14)-C(15)	0.65(16)
C(12)-C(13)-C(14)-C(17)	-179.47(10)
C(13)-C(14)-C(15)-C(16)	-0.16(16)
C(17)-C(14)-C(15)-C(16)	179.96(10)
C(12)-C(11)-C(16)-C(15)	1.21(15)
S(1)-C(11)-C(16)-C(15)	179.50(8)
C(14)-C(15)-C(16)-C(11)	-0.76(16)

Symmetry transformations used to generate equivalent atoms: none

Compound $4 \cdot BF_3$ crystallizes in the orthorhombic space group *Pnma* with half a molecule in the asymmetric unit.

Table 7. Crystal data and structure refinement for 4• BF₃.

Identification code	P15025
CCDC Deposition Number	1435048
Empirical formula	C6 H9 B F3 N O
Formula weight	178.95
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pnma

Unit cell dimensions	$a = 11.4731(4) \text{ Å} \qquad \alpha = 90^{\circ}.$
	$b = 8.2140(2) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 7.6132(3) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	717.47(4) Å ³
Ζ	4
Density (calculated)	1.657 Mg/m^3
Absorption coefficient	0.160 mm ⁻¹
F(000)	368
Crystal size	0.350 x 0.350 x 0.350 mm ³
Theta range for data collection	3.211 to 36.320°.
Index ranges	-19<=h<=18, -12<=k<=13, -12<=l<=12
Reflections collected	17613
Independent reflections	1826 [R(int) = 0.0355]
Completeness to theta = 25.242°	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7471 and 0.6989
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1826 / 0 / 64
Goodness-of-fit on F2	1.038
Final R indices [I>2sigma(I)]	R1 = 0.0317, $wR2 = 0.0824$
R indices (all data)	R1 = 0.0404, wR2 = 0.0863
Extinction coefficient	n/a
Largest diff. peak and hole	0.421 and -0.261 e.Å ⁻³

Table 8. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å² x 10³) for **4**•**BF**₃. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
B(1)	3589(1)	7500	3777(1)	12(1)
F(1)	4102(1)	8894(1)	3124(1)	19(1)
F(2)	2397(1)	7500	3477(1)	20(1)

Supporting Information for Liniger, VanderVelde, Takase, Shahgholi, and Stoltz			S 77	
N(1)	3755(1)	7500	5872(1)	9(1)
C(1)	4987(1)	7500	6625(1)	9(1)
C(2)	4675(1)	7500	8549(1)	11(1)
O(1)	5855(1)	7500	5778(1)	14(1)
C(3)	3881(1)	9010(1)	8616(1)	13(1)
C(4)	3274(1)	8993(1)	6792(1)	11(1)

Table 9. Bond lengths [Å] and angles [°] for $4 \bullet BF_3$.

B(1)-F(1)#1	1.3803(7)
B(1)-F(1)	1.3803(7)
B(1)-F(2)	1.3857(12)
B(1)-N(1)	1.6065(12)
N(1)-C(4)	1.5160(7)
N(1)-C(4)#1	1.5161(7)
N(1)-C(1)	1.5258(11)
C(1)-O(1)	1.1862(11)
C(1)-C(2)	1.5082(12)
C(2)-C(3)#1	1.5401(8)
C(2)-C(3)	1.5401(8)
C(2)-H(2)	1.0000
C(3)-C(4)	1.5538(9)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
F(1)#1-B(1)-F(1)	112.07(8)
F(1)#1-B(1)-F(2)	111.20(5)
F(1)-B(1)-F(2)	111.20(5)
F(1)#1-B(1)-N(1)	107.89(5)
F(1)-B(1)-N(1)	107.89(5)
F(2)-B(1)-N(1)	106.30(8)
C(4)-N(1)-C(4)#1	107.99(6)
C(4)-N(1)-C(1)	99.44(4)
C(4)#1-N(1)-C(1)	99.44(4)
C(4)-N(1)-B(1)	114.54(4)
C(4)#1-N(1)-B(1)	114.53(4)

C(1)-N(1)-B(1)	118.86(7)
O(1)-C(1)-C(2)	136.64(8)
O(1)-C(1)-N(1)	125.06(8)
C(2)-C(1)-N(1)	98.30(6)
C(1)-C(2)-C(3)#1	99.96(5)
C(1)-C(2)-C(3)	99.96(5)
C(3)#1-C(2)-C(3)	107.31(7)
C(1)-C(2)-H(2)	115.8
C(3)#1-C(2)-H(2)	115.8
C(3)-C(2)-H(2)	115.8
C(2)-C(3)-C(4)	103.18(5)
C(2)-C(3)-H(3A)	111.1
C(4)-C(3)-H(3A)	111.1
C(2)-C(3)-H(3B)	111.1
C(4)-C(3)-H(3B)	111.1
H(3A)-C(3)-H(3B)	109.1
N(1)-C(4)-C(3)	104.89(5)
N(1)-C(4)-H(4A)	110.8
C(3)-C(4)-H(4A)	110.8
N(1)-C(4)-H(4B)	110.8
C(3)-C(4)-H(4B)	110.8
H(4A)-C(4)-H(4B)	108.8

Symmetry transformations used to generate equivalent atoms: #1 x,-y+3/2,z

Table 10. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for $4 \cdot \text{BF}_3$. The anisotropic displacement factor exponent takes the form: $-2p^2[\text{ h}^2 a^{*2}U^{11} + ... + 2 \text{ h} \text{ k} a^* \text{ b}^* U^{12}]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathbf{D}(1)$	16(1)	11(1)	10(1)	0	2(1)	0
F(1)	28(1)	16(1)	10(1) 13(1)	0 4(1)	-2(1) 0(1)	-4(1)
F(2)	18(1)	24(1)	18(1)	0	-9(1)	0
N(1)	9(1)	8(1)	9(1)	0	-1(1)	0
C(1)	9(1)	7(1)	12(1)	0	-1(1)	0
C(2)	12(1)	12(1)	9(1)	0	-2(1)	0
O(1)	10(1)	14(1)	18(1)	0	3(1)	0
C(3)	16(1)	13(1)	11(1)	-3(1)	-1(1)	2(1)

C(4)	12(1)	10(1)	12(1)	-1(1)	0(1)	3(1)
------	-------	-------	-------	-------	------	------

Table 11. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for **4**•**BF**₃.

	Х	У	Z	U(eq)
H(2)	5347	7500	9385	13
H(3A)	4342	10017	8781	16
H(3B)	3303	8920	9577	16
H(4A)	2417	8913	6924	13
H(4B)	3462	9993	6123	13

Table 12. Torsion angles [°] for 4•BF₃.

F(1)#1-B(1)-N(1)-C(4)	177.85(6)
F(1)-B(1)-N(1)-C(4)	56.58(9)
F(2)-B(1)-N(1)-C(4)	-62.78(5)
F(1)#1-B(1)-N(1)-C(4)#1	-56.58(9)
F(1)-B(1)-N(1)-C(4)#1	-177.85(6)
F(2)-B(1)-N(1)-C(4)#1	62.78(5)
F(1)#1-B(1)-N(1)-C(1)	60.64(6)
F(1)-B(1)-N(1)-C(1)	-60.64(6)
F(2)-B(1)-N(1)-C(1)	180.000(1)
C(4)-N(1)-C(1)-O(1)	-124.91(4)
C(4)#1-N(1)-C(1)-O(1)	124.91(4)
B(1)-N(1)-C(1)-O(1)	0.000(1)
C(4)-N(1)-C(1)-C(2)	55.09(4)
C(4)#1-N(1)-C(1)-C(2)	-55.09(4)
B(1)-N(1)-C(1)-C(2)	180.000(1)
O(1)-C(1)-C(2)-C(3)#1	-125.14(4)
N(1)-C(1)-C(2)-C(3)#1	54.86(4)
O(1)-C(1)-C(2)-C(3)	125.14(4)
N(1)-C(1)-C(2)-C(3)	-54.86(4)
C(1)-C(2)-C(3)-C(4)	33.32(6)
C(3)#1-C(2)-C(3)-C(4)	-70.48(7)

C(4)#1-N(1)-C(4)-C(3)	69.51(7)
C(1)-N(1)-C(4)-C(3)	-33.72(6)
B(1)-N(1)-C(4)-C(3)	-161.57(6)
C(2)-C(3)-C(4)-N(1)	0.55(6)

Symmetry transformations used to generate equivalent atoms: #1 x,-y+3/2,z

Table 13. Hydrogen bonds for 4•BF₃ [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(3)-H(3A)F(1)#2	0.99	2.47	3.1741(8)	128.0
C(4)-H(4B)O(1)#2	0.99	2.64	3.6227(8)	174.3

Symmetry transformations used to generate equivalent atoms: #1 x, -y+3/2, z #2 -x+1, -y+2, -z+1

Compound **11** crystallizes in the triclinic space group P-1 with one molecule in the asymmetric unit. The coordinates for the hydrogen atoms bound to N1 and O2 were located in the difference Fourier synthesis and refined semi-freely with the help of a restraint on the N-H and O-H distances (0.91(4) and 0.84(4) Å, respectively).

 Table 14. Crystal data and structure refinement for 11.

Identification code	P15095		
CCDC Deposition Number	1435047		
Empirical formula	C6 H12 B F4 N O2		
Formula weight	216.98		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 5.4701(2) Å	$\alpha = 103.512(2)^{\circ}$.	
	b = 7.6337(3) Å	$\beta = 91.167(2)^{\circ}$.	
	c = 11.2184(4) Å	$\gamma = 98.484(2)^{\circ}$.	
Volume	449.76(3) Å ³		
Z	2		
Density (calculated)	1.602 Mg/m ³		
Absorption coefficient	1.495 mm ⁻¹		
F(000)	224		
Crystal size	0.150 x 0.050 x 0.050 mm ³		
Theta range for data collection	4.059 to 74.488°.		
Index ranges -6<=h<=6, -9<=k<=9, -14<=l<=1		9, -14<=1<=13	
Reflections collected	6970		
Independent reflections	1825 [R(int) = 0.053	7]	
Completeness to theta = 67.679°	99.7 %		
Absorption correction	Semi-empirical from	equivalents	
Max. and min. transmission	0.7538 and 0.6051		
Refinement method	Full-matrix least-squ	ares on F ²	
Data / restraints / parameters	1825 / 3 / 139		
Goodness-of-fit on F2	1.043		
Final R indices [I>2sigma(I)]	Final R indices [I>2sigma(I)] $R1 = 0.0378, wR2 = 0.0918$		
R indices (all data) $R1 = 0.0451, WR2 = 0.0965$			

```
Extinction coefficientn/aLargest diff. peak and hole0.266 and -0.339 e.Å<sup>-3</sup>
```

Table 15. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for **11**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
N(1)	-67(2)	3792(2)	6555(1)	13(1)
C(1)	342(3)	4840(2)	7868(1)	17(1)
C(2)	2125(3)	4014(2)	8553(1)	16(1)
C(3)	1208(3)	1996(2)	8446(1)	13(1)
O(1)	4957(2)	1959(2)	9585(1)	19(1)
O(2)	2065(2)	-536(2)	9164(1)	16(1)
C(4)	839(3)	974(2)	7082(1)	14(1)
C(5)	-981(3)	1806(2)	6428(1)	15(1)
C(6)	2939(3)	1146(2)	9123(1)	14(1)
B(1)	5206(3)	7199(2)	6208(2)	14(1)
F(1)	2724(2)	6740(1)	5764(1)	19(1)
F(2)	6692(2)	7557(1)	5272(1)	25(1)
F(3)	5469(2)	8718(1)	7184(1)	23(1)
F(4)	5875(2)	5721(1)	6602(1)	26(1)

 Table 16. Bond lengths [Å] and angles [°] for 11.

N(1)-C(5)	1.4969(19)
N(1)-C(1)	1.4975(19)
N(1)-H(1N1)	0.904(15)
N(1)-H(1N2)	0.902(15)
C(1)-C(2)	1.522(2)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-C(3)	1.524(2)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(6)	1.509(2)

C(3)-C(4)	1.540(2)
C(3)-H(3)	1.0000
O(1)-C(6)	1.224(2)
O(2)-C(6)	1.3135(19)
O(2)-H(2O)	0.872(16)
C(4)-C(5)	1.519(2)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
B(1)-F(3)	1.3843(19)
B(1)-F(2)	1.393(2)
B(1)-F(4)	1.397(2)
B(1)-F(1)	1.4021(19)
C(5)-N(1)-C(1)	112.63(12)
C(5)-N(1)-H(1N1)	107.8(13)
C(1)-N(1)-H(1N1)	108.3(13)
C(5)-N(1)-H(1N2)	109.1(12)
C(1)-N(1)-H(1N2)	111.7(12)
H(1N1)-N(1)-H(1N2)	107.1(18)
N(1)-C(1)-C(2)	110.29(12)
N(1)-C(1)-H(1A)	109.6
C(2)-C(1)-H(1A)	109.6
N(1)-C(1)-H(1B)	109.6
C(2)-C(1)-H(1B)	109.6
H(1A)-C(1)-H(1B)	108.1
C(1)-C(2)-C(3)	111.08(13)
C(1)-C(2)-H(2A)	109.4
C(3)-C(2)-H(2A)	109.4
C(1)-C(2)-H(2B)	109.4
C(3)-C(2)-H(2B)	109.4
H(2A)-C(2)-H(2B)	108.0
C(6)-C(3)-C(2)	112.11(13)
C(6)-C(3)-C(4)	110.62(12)
C(2)-C(3)-C(4)	109.79(12)
C(6)-C(3)-H(3)	108.1
C(2)-C(3)-H(3)	108.1
C(4)-C(3)-H(3)	108.1
C(6)-O(2)-H(2O)	109.5(16)

C(5)-C(4)-C(3)	109.78(12)
C(5)-C(4)-H(4A)	109.7
C(3)-C(4)-H(4A)	109.7
C(5)-C(4)-H(4B)	109.7
C(3)-C(4)-H(4B)	109.7
H(4A)-C(4)-H(4B)	108.2
N(1)-C(5)-C(4)	110.19(12)
N(1)-C(5)-H(5A)	109.6
C(4)-C(5)-H(5A)	109.6
N(1)-C(5)-H(5B)	109.6
C(4)-C(5)-H(5B)	109.6
H(5A)-C(5)-H(5B)	108.1
O(1)-C(6)-O(2)	123.82(14)
O(1)-C(6)-C(3)	122.68(14)
O(2)-C(6)-C(3)	113.50(13)
F(3)-B(1)-F(2)	110.06(13)
F(3)-B(1)-F(4)	109.67(13)
F(2)-B(1)-F(4)	109.81(13)
F(3)-B(1)-F(1)	109.61(13)
F(2)-B(1)-F(1)	109.55(13)
F(4)-B(1)-F(1)	108.10(13)

Symmetry transformations used to generate equivalent atoms:

Table 17. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **11**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
N(1)	16(1)	13(1)	11(1)	5(1)	1(1)	5(1)
C(1)	25(1)	14(1)	12(1)	1(1)	-2(1)	8(1)
C(2)	22(1)	14(1)	13(1)	3(1)	-3(1)	6(1)
C(3)	15(1)	16(1)	12(1)	7(1)	2(1)	6(1)
O(1)	21(1)	18(1)	21(1)	8(1)	-6(1)	3(1)
O(2)	16(1)	17(1)	18(1)	9(1)	0(1)	6(1)
C(4)	17(1)	11(1)	14(1)	4(1)	-3(1)	4(1)
C(5)	16(1)	12(1)	16(1)	5(1)	-4(1)	2(1)
C(6)	18(1)	16(1)	10(1)	5(1)	3(1)	7(1)
B(1)	15(1)	14(1)	14(1)	2(1)	1(1)	3(1)

Supporting Information for Liniger, VanderVelde, Takase, Shahgholi, and Stoltz

Table 18. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for **11**.

	X	у	Z	U(eq)
H(1N1)	-1230(30)	4250(30)	6190(18)	21(5)
H(1N2)	1320(30)	3910(30)	6140(17)	16(5)
H(1A)	-1259	4817	8265	20
H(1B)	1029	6128	7905	20
H(2A)	2296	4671	9430	20
H(2B)	3776	4160	8211	20
H(3)	-436	1883	8818	16
H(2O)	3160(40)	-970(30)	9540(20)	35(6)
H(4A)	2446	1057	6692	17
H(4B)	200	-330	7013	17
H(5A)	-1182	1168	5548	18
H(5B)	-2617	1653	6785	18

Table 19. Torsion angles [°] for **11**.

C(5)-N(1)-C(1)-C(2)	56.22(18)
N(1)-C(1)-C(2)-C(3)	-55.56(18)
C(1)-C(2)-C(3)-C(6)	-179.72(12)
C(1)-C(2)-C(3)-C(4)	56.90(17)
C(6)-C(3)-C(4)-C(5)	177.91(13)
C(2)-C(3)-C(4)-C(5)	-57.84(17)
C(1)-N(1)-C(5)-C(4)	-57.86(17)
C(3)-C(4)-C(5)-N(1)	57.83(17)
C(2)-C(3)-C(6)-O(1)	-7.2(2)
C(4)-C(3)-C(6)-O(1)	115.71(16)
C(2)-C(3)-C(6)-O(2)	172.77(13)
C(4)-C(3)-C(6)-O(2)	-64.32(17)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1N1)F(1)#1	0.904(15)	2.239(18)	2.8676(15)	126.2(16)
N(1)-H(1N1)F(4)#2	0.904(15)	2.072(18)	2.8338(16)	141.2(17)
N(1)-H(1N2)F(1)	0.902(15)	2.318(18)	2.8566(16)	118.2(15)
N(1)-H(1N2)F(2)#3	0.902(15)	2.134(17)	2.8984(16)	141.9(16)
C(1)-H(1B)O(2)#4	0.99	2.58	3.4679(19)	149.0
C(2)-H(2B)F(4)	0.99	2.58	3.380(2)	137.3
O(2)-H(2O)O(1)#5	0.872(16)	1.769(17)	2.6349(15)	172(2)
C(4)-H(4B)F(3)#6	0.99	2.61	3.1969(19)	118.3
C(5)-H(5A)F(1)#1	0.99	2.62	3.1110(17)	110.6
C(5)-H(5B)F(3)#6	0.99	2.47	3.1139(19)	122.1

Table 20. Hydrogen bonds for **11** [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z+1 #2 x-1,y,z #3 -x+1,-y+1,-z+1

#4 x,y+1,z #5 -x+1,-y,-z+2 #6 x-1,y-1,z

Kinetic Experiments

The NMR spectra for kinetic experiments were recorded on Varian 600 MHz spectrometer in CD_3CN with at least 30 seconds relaxation delay. The NMR data were processed with MestReNova v8.1.4. using the advanced data analysis tool and Microsoft Excel 2011 for Mac. The following, non-overlapping signals were used for quantitative integration (in ppm): standard (7.60-7.29), **4**•**BF**₃ (3.65-3.49), **4**•**HBF**₄ (3.84-3.72), **11** (3.45-3.31 or 2.70-2.61).

Procedure for hydrolysis study of 4•BF₃ by ¹**H-NMR** (9.6 equiv D₂O; CD₃CN; 10.6 μM; internal standard: 1,3,5-trichlorobenzene): A piece of the crystal of **4•BF**₃ (<2.0 mg, calcd. with standard 1.04 mg) was dissolved in dry CD₃CN (0.45 mL, distilled over CaH₂ under argon prior to use) and transferred into a J. Young NMR-tube. After all spectral data were recorded (¹H, ¹³C, ¹⁹F, ¹¹B, ¹⁴N, ¹⁵N), a stock solution of 1,3,5-trichlorobenzene in CD₃CN (50 μL, 1.0 mg, 5.51 µmol, 11.0 mg dissolved in 0.55 mL CD₃CN) was added by a micro-syringe in the glove box and the content of the tube was vigorously shaken. After the first ¹H-NMR spectrum was recorded (to check the peak intensity of the internal standard), a stock solution of D₂O in CD₃CN (50 μL, 8.8 equiv, 10 μL D₂O dissolved in 0.49 mL CD₃CN) was added to the NMR sample by a micro-syringe in air. After vigorous shaking of the sample, a series of 160 single scan ¹H-NMR spectra was recorded as quickly as possible (every 3 minutes over 8 h). The calculated concentration *c*₀ of the NMR solution at *t* = 0 was 10.6 μM (1.04 mg in 0.55 mL, rel. to internal standard). The calculated half-life *t*_{1/2} for the hydrolysis was 87 minutes (9.6 equiv D₂O, rel. to 1.04 mg substrate according to internal standard).

$$\ln(c) = -0.0239 * t + 2.3616; R^{2} = 0.99697$$

$$t_{1/2} = (\ln(2)/0.0239) * 180 \text{ s} = 5220 \text{ s} = 87 \text{ min}$$

$$c_{0} = e^{2.3616} = 10.6 \text{ }\mu\text{M}.$$

Hydrolysis of 4• BF₃: (9.6 equiv D₂O, 10.6 μM, *t*_{1/2} = 87 min)

Procedure for hydrolysis study of 4•HBF₄ by ¹H-NMR (4.9 equiv D₂O; CD₃CN; 87.4 μ M; internal standard: 1,3,5-trichlorobenzene): A solution of **4•HBF**₄ (20.0 mg) and 1,3,5-trichlorobenzene (9.2 mg) in dry CD₃CN (0.6 mL, distilled over CaH₂ under argon prior to use) was transferred to a J. Young NMR-tube in a nitrogen-filled glove box. After recording the first ¹H-NMR spectrum and calculating the actual amount of protonated amide **4•HBF**₄ present (14.6 mg of **4•HBF**₄, rel. to the standard), the concentration of the NMR solution was adjusted with dry CD₃CN (0.24 mL, conc. of **4•HBF**₄ 87.4 μ M) and D₂O (6.5 μ L, 4.9 equiv) was added by a micro-syringe. After vigorous shaking and shimming of the sample (the time was measured = 90 seconds), a series of single scan ¹H-NMR spectra was recorded as quickly as possible (every 30 seconds). The calculated concentration *c*₀ of the NMR solution at *t* = 0 was 87.4 μ M (14.6 mg in 0.84 mL, rel. to internal standard). The calculated half-life *t*_{1/2}(H₂O) for the hydrolysis of **4•HBF**₄ was less than one minute <1 min (4.9 equiv D₂O relative to **4•HBF**₄, 87.4 μ M, with internal standard), since not even traces of **4•HBF**₄ were visible in the ¹H-NMR spectrum after adding water and shimming of the sample (3 minutes).

Hydrolysis of 4• HBF₄: (4.9 equiv D₂O, 87.4 μM, *t*_{1/2} < 1 min)

Procedure for decomposition study of 4•HBF₄ by ¹H-NMR (dry CD₃CN; 117 μ M; internal standard: 1,3,5-trichlorobenzene): A solution of **4•HBF**₄ (20.0 mg) and 1,3,5-trichlorobenzene (12.3 mg) in dry CD₃CN (0.84 mL, distilled over CaH₂ under argon prior to use) was transferred to a J. Young NMR-tube in a nitrogen-filled glovebox. Then, a series of single scan ¹H-NMR spectra were recorded every 5 minutes over 16 h. The calculated concentration of **4•HBF**₄ in the NMR solution at t = 0 was 117 μ M (19.5 mg in 0.84 mL, rel. to internal standard). The calculated half-life $t_{1/2}$ (CD₃CN) for the decomposition of **4•HBF**₄ in dry CD₃CN was 119 min = 1 h 59 min (117 μ M, with internal standard).

 $\ln(c) = -0.0288 * t + 4.7608; R^2 = 0.99605$

 $t_{1/2} = (\ln(2)/0.0288) * 297 \text{ s} = 7148 \text{ s} = 119 \text{ min} = 1 \text{ h} 59 \text{ min}$

 $c_0 = e^{4.7608} = 116.8 \ \mu M$

Decomposition of 4• HBF₄ (dry CD₃CN, 117 μM, *t*_{1/2} = 119 min)

^a DFT RB3LYP 6-311+G** calculations

^b Tani, K.; Stoltz, B. M. Nature **2006**, 441, 731.

^c Kamarov, I. V.; Yanik, S.; Ishchenko, A. Y.; Davies, J. E.; Goodman, J. M.; Kirby, A. J. J. Am. Chem. Soc. 2015, 137, 926.

^d Banks, R. E.; Besheesh, M. K.; Pritchard, R. G.; Sharif, I. Acta Cryst. 1993, C49, 1804.

^e definition: $\xi = ((360^{\circ}-CCN)/2)-OCN$; CCN = bond path angle of C-C-N; OCN = bond path angle of O-C-N.

MacSPARTAN '10 MECHANICS PROGRAM: x86/Darwin 1.1.0 Frequency Calculation Reason for exit: Successful completion Mechanics CPU Time : .04 Mechanics Wall Time: .26 MacSPARTAN '10 Quantum Mechanics Program: (x86/Darwin) build 1.1.0v4 Job type: Geometry optimization. Method: RB3LYP Basis set: 6-311+G** Number of shells: 108 Number of basis functions: 318 Multiplicity: 1 SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Optimization: Step Energy Max Grad. Max Dist. 1 -688.656221 0.408451 0.261502 2 -688.751896 0.173798 0.164331 3 -688.780015 0.123197 0.208810 4 -688.795022 0.025896 0.211679 5 -688.793019 0.032840 0.117793 6 -688.798577 0.008058 0.041223 7 -688.798994 0.004691 0.015330 8 -688.799076 0.000671 0.006070 9 -688.799080 0.000272 0.002090 10 -688.799081 0.000059 0.000585 Reason for exit: Successful completion Quantum Calculation CPU Time : 1:11:57.07 Quantum Calculation Wall Time: 1:15:23.90 MacSPARTAN '10 Properties Program: (x86/Darwin) build 1.1.0 Reason for exit: Successful completion Properties CPU Time : 1.24 Properties Wall Time: 1.43 molecule M0001 terminated normally End- molecule "M0001" Thu Jan 15 17:08:17 2015 xyz coordinates:

Ν 0.091165 -0.196059 0.00000 С -1.981641 -0.467673 1.254298 С -1.981641 -0.467673 -1.254298 С -2.123156 0.422995 0.000000 С -0.473371 -0.877215 -1.224015 С -0.473371 -0.877215 1.224015 -1.331473 Н -2.646305 1.204497

Н	-2.646305	-1.331473	-1.204497
Н	0.081173	-0.507027	-2.084004
Н	0.081173	-0.507027	2.084004
Н	-2.216770	0.088792	2.162880
Н	-2.216770	0.088792	-2.162880
Н	-2.958855	1.116644	0.000000
Н	-0.303728	-1.947619	-1.130495
Н	-0.303728	-1.947619	1.130495
С	-0.757188	1.081620	0.00000
0	-0.356302	2.190888	0.000000
В	1.750600	-0.074010	0.000000
F	2.180159	-1.396771	0.00000
F	2.075910	0.595728	1.160970
F	2.075910	0.595728	-1.160970

4•H+

MacSPARTAN '10 MECHANICS PROGRAM: x86/Darwin 1.1.0 Frequency Calculation Reason for exit: Successful completion Mechanics CPU Time : .04 Mechanics Wall Time: .14 MacSPARTAN '10 Quantum Mechanics Program: (x86/Darwin) build 1.1.0v4 Job type: Geometry optimization. Method: RB3LYP Basis set: 6-311+G** Number of shells: 88 Number of basis functions: 236 Charge : +1 Multiplicity: 1 SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Optimization: Step Energy Max Grad. Max Dist. 1 -364.452896 0.040618 0.142176 2 -364.466803 0.015862 0.091710 3 -364.469917 0.005157 0.046188 4 -364.470626 0.002549 0.034528 5 -364.470768 0.000721 0.012846 6 -364.470785 0.000086 0.003574 7 -364.470784 0.000034 0.000515 Reason for exit: Successful completion Quantum Calculation CPU Time : 21:54.43 Quantum Calculation Wall Time: 23:26.35

MacSPARTAN '10 Semi-Empirical Program: (x86/Darwin) build 1.1.0 Semi-empirical Property Calculation M0000 Guess from Archive Energy Due to Solvation Solvation Energy SM5.4/A -223.033 Memory Used: 769.81 Kb Reason for exit: Successful completion Semi-Empirical Program CPU Time : .03 Semi-Empirical Program Wall Time: .11 MacSPARTAN '10 Properties Program: (x86/Darwin) build 1.1.0 Reason for exit: Successful completion Properties CPU Time : .76 Properties Wall Time: .86 molecule M0000 terminated normally End- molecule "M0000" Mon Jan 19 00:38:15 2015

xyz coordinates:

С	0.550974	-0.890757	-1.244599
С	0.879832	0.637545	-1.261696
С	0.167200	1.192396	0.00000
С	0.879832	0.637545	1.261696
С	0.550974	-0.890757	1.244599
N	-0.289982	-1.052410	0.00000
С	-1.076392	0.355456	0.00000
0	-2.241749	0.434876	0.00000
Н	-0.049125	-1.201906	-2.098964
Н	1.426352	-1.533688	-1.169158
Н	1.951862	0.823761	-1.209809
Н	0.498385	1.104629	-2.169610
Н	-0.020390	2.261841	0.00000
Н	1.951862	0.823761	1.209809
Н	0.498385	1.104629	2.169610
Н	1.426352	-1.533688	1.169158
Н	-0.049125	-1.201906	2.098964
Н	-0.903825	-1.867396	0.00000

MacSPARTAN '10 MECHANICS PROGRAM: x86/Darwin 1.1.0 Frequency Calculation Reason for exit: Successful completion Mechanics CPU Time : .04 Mechanics Wall Time: .15

```
MacSPARTAN '10 Quantum Mechanics Program: (x86/Darwin) build 1.1.0v4
Job type: Geometry optimization.
Method: RB3LYP
Basis set: 6-311+G**
Number of shells: 84
Number of basis functions: 230
Multiplicity: 1
SCF model:
A restricted hybrid HF-DFT SCF calculation will be
performed using Pulay DIIS + Geometric Direct Minimization
Optimization:
Step Energy Max Grad. Max Dist.
1 -364.090560 0.035020 0.139826
2 -364.098450 0.005637 0.079748
3 -364.098739 0.000930 0.003240
4 -364.098745 0.000777 0.012519
5 -364.098757 0.000045 0.001441
6 -364.098757 0.000025 0.000323
Reason for exit: Successful completion
Quantum Calculation CPU Time : 15:38.18
Quantum Calculation Wall Time: 16:41.82
MacSPARTAN '10 Semi-Empirical Program: (x86/Darwin) build 1.1.0
Semi-empirical Property Calculation
M0001
Guess from Archive
Energy Due to Solvation
Solvation Energy SM5.4/A -36.911
Memory Used: 716.53 Kb
Reason for exit: Successful completion
Semi-Empirical Program CPU Time : .03
Semi-Empirical Program Wall Time: .13
MacSPARTAN '10 Properties Program: (x86/Darwin) build 1.1.0
Reason for exit: Successful completion
Properties CPU Time : .65
Properties Wall Time: .75
molecule M0001 terminated normally
End- molecule "M0001" Mon Jan 19 00:33:28 2015
```

```
xyz coordinates:
```

Н	-0.237490	1.204140	2.086549
С	-0.723227	0.783274	1.204871
С	-0.723227	0.783274	-1.204871
С	0.105993	-1.140973	0.00000
С	-0.730148	-0.793225	-1.250191
С	-0.730148	-0.793225	1.250191
N	0.071509	1.166991	0.00000
Н	-1.721509	1.215201	-1.129361
Н	0.588037	-2.115033	0.00000
H	-0.260790	-1.165806	-2.163111
H	-0.260790	-1.165806	2.163111
н	-1.721509	1.215201	1.129361
н	-0.237490	1.204140	-2.086549

Н	-1.736907	-1.212167	-1.192406
Η	-1.736907	-1.212167	1.192406
С	1.052203	0.065379	0.00000
0	2.241385	0.155122	0.00000

Properties CPU Time : .98 Properties Wall Time: 1.11 molecule M0001 terminated normally End- molecule "M0001" Tue Jan 20 10:47:57 2015

xyz coordinates:

Н	-0.379959	-1.049165	2.104260
С	0.303664	-1.065746	1.255203
С	0.303664	-1.065746	-1.255203
С	1.096504	0.977518	0.00000
С	1.308056	0.112304	-1.258227
С	1.308056	0.112304	1.258227
N	-0.551473	-0.974068	0.00000
Н	0.788719	-2.042030	-1.226859
Н	1.800033	1.809801	0.00000
Н	1.171301	0.711824	-2.159932
Н	1.171301	0.711824	2.159932
Н	0.788719	-2.042030	1.226859
Н	-0.379959	-1.049165	-2.104260
Н	2.329454	-0.270034	-1.280007
Н	2.329454	-0.270034	1.280007
Н	-1.267670	-1.705038	0.00000
С	-1.322101	0.382149	0.00000
С	-0.345415	1.522004	0.00000
Н	-0.561186	2.144823	0.875259
Н	-0.561186	2.144823	-0.875259
0	-2.501654	0.343121	0.00000

S3 MacSPARTAN '10 MECHANICS PROGRAM: x86/Darwin 1.1.0 Frequency Calculation Reason for exit: Successful completion Mechanics CPU Time : .05 Mechanics Wall Time: .15 MacSPARTAN '10 Quantum Mechanics Program: (x86/Darwin) build 1.1.0v4 Job type: Geometry optimization. Method: RB3LYP Basis set: 6-311+G** Number of shells: 132 Number of basis functions: 354 Multiplicity: 1 SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization

```
Optimization:
Step Energy Max Grad. Max Dist.
1 -520.209046 0.025272 0.140462
2 -520.212622 0.004689 0.062347
3 -520.212915 0.001060 0.003240
4 -520.212926 0.000720 0.009921
5 -520.212933 0.000022 0.000437
Reason for exit: Successful completion
Quantum Calculation CPU Time : 48:24.97
Quantum Calculation Wall Time: 50:28.04
MacSPARTAN '10 Semi-Empirical Program: (x86/Darwin) build 1.1.0
Semi-empirical Property Calculation
M0001
Guess from Archive
Energy Due to Solvation
Solvation Energy SM5.4/A -27.982
Memory Used: 1.916 Mb
Reason for exit: Successful completion
Semi-Empirical Program CPU Time : .08
Semi-Empirical Program Wall Time: .32
MacSPARTAN '10 Properties Program: (x86/Darwin) build 1.1.0
Reason for exit: Successful completion
Properties CPU Time : 1.91
Properties Wall Time: 2.05
molecule M0001 terminated normally
End- molecule "M0001" Fri Mar 20 12:22:58 2015
```

xyz coordinates:

Н	-0.780184	-0.734683	-2.163840
С	-0.252092	-1.052494	-1.257765
С	1.929767	-0.996983	0.00000
С	-0.252092	-1.052494	1.257765
С	1.183723	-0.500230	1.253164
С	-1.026384	-0.561927	0.00000
С	1.183723	-0.500230	-1.253164
Н	1.987535	-2.091556	0.00000
Н	-0.248656	-2.149136	1.256914
Н	-0.248656	-2.149136	-1.256914
Н	2.959442	-0.620227	0.00000
Н	-0.780184	-0.734683	2.163840
Н	1.708953	-0.819637	2.160057
Н	1.708953	-0.819637	-2.160057
С	1.105118	1.035971	-1.214498
Н	2.102728	1.486536	-1.210384
Н	0.576974	1.423538	-2.091055
С	1.105118	1.035971	1.214498
Н	2.102728	1.486536	1.210384
Н	0.576974	1.423538	2.091055
N	0.396194	1.509581	0.00000
С	-0.956729	0.973100	0.00000
0	-1.918777	1.694423	0.00000
С	-2.468841	-1.060474	0.000000

Н	-2.489368	-2.154914	0.000000
Н	-3.008844	-0.704553	-0.880368
Н	-3.008844	-0.704553	0.880368

Properties CPU Time : 1.65 Properties Wall Time: 1.77 molecule M0001 terminated normally End- molecule "M0001" Thu Mar 19 16:30:05 2015

xyz coordinates:

Н	2.532550	-1.178395	0.00000
С	1.990618	-0.227491	0.00000
С	0.374079	1.244044	-1.273760
С	0.374079	1.244044	1.273760
С	-0.506536	1.383420	0.00000
С	1.103263	-0.112554	1.256079
С	1.103263	-0.112554	-1.256079
Н	1.097037	2.063187	-1.282791
Н	1.097037	2.063187	1.282791
Н	2.744508	0.563844	0.00000
Н	-0.238828	1.349465	-2.173301
Н	-0.238828	1.349465	2.173301
Н	-1.058125	2.323995	0.00000
Н	1.708073	-0.219249	2.159923
Н	1.708073	-0.219249	-2.159923
С	0.071169	-1.242738	1.258546
Н	-0.609357	-1.189090	2.110630
Н	0.527303	-2.234244	1.232845
С	0.071169	-1.242738	-1.258546
Н	-0.609357	-1.189090	-2.110630
Н	0.527303	-2.234244	-1.232845
N	-0.778085	-1.109506	0.00000
С	-1.509315	0.273678	0.00000
0	-2.691049	0.254626	0.00000
Н	-1.525745	-1.809074	0.00000

MacSPARTAN '10 MECHANICS PROGRAM: x86/Darwin 1.1.0
Frequency Calculation
Reason for exit: Successful completion
Mechanics CPU Time : .04
Mechanics Wall Time: .13
MacSPARTAN '10 Quantum Mechanics Program: (x86/Darwin) build 1.1.0v4
Job type: Geometry optimization.
Method: RB3LYP
Basis set: 6-311+G**
Number of shells: 64
Number of basis functions: 174

```
Multiplicity: 1
SCF model:
A restricted hybrid HF-DFT SCF calculation will be
performed using Pulay DIIS + Geometric Direct Minimization
Optimization:
Step Energy Max Grad. Max Dist.
1 -286.715877 0.019677 0.088005
2 -286.718703 0.005065 0.114454
3 -286.718981 0.001039 0.003240
4 -286.718980 0.000980 0.074524
5 -286.719001 0.000090 0.008802
6 -286.719001 0.000027 0.002854
Reason for exit: Successful completion
Quantum Calculation CPU Time : 6:06.04
Quantum Calculation Wall Time: 6:40.61
MacSPARTAN '10 Semi-Empirical Program: (x86/Darwin) build 1.1.0
Semi-empirical Property Calculation
M0001
Guess from Archive
Energy Due to Solvation
Solvation Energy SM5.4/A -30.366
Memory Used: 393.70 Kb
Reason for exit: Successful completion
Semi-Empirical Program CPU Time : .02
Semi-Empirical Program Wall Time: .13
MacSPARTAN '10 Properties Program: (x86/Darwin) build 1.1.0
Reason for exit: Successful completion
Properties CPU Time : .38
Properties Wall Time: .47
molecule M0001 terminated normally
End- molecule "M0001" Mon Jan 19 14:29:36 2015
```

xyz coordinates:

N	0.100299	-1.096707	-0.061089
С	-1.315441	-0.818669	0.145775
С	-1.407178	0.687698	-0.189405
С	-0.000063	1.223901	0.122371
С	0.914565	0.004125	-0.010681
Н	-1.614160	-1.017326	1.183354
Н	-1.940319	-1.430660	-0.508783
Н	-1.625987	0.809740	-1.253148
Н	-2.198518	1.184503	0.373229
Н	0.086253	1.588211	1.151679
Н	0.335116	2.024028	-0.537504
Н	0.500400	-2.021573	-0.007568
0	2.129001	-0.004460	-0.048226

MacSPARTAN '10 MECHANICS PROGRAM: x86/Darwin 1.1.0 Frequency Calculation Reason for exit: Successful completion Mechanics CPU Time : .05 Mechanics Wall Time: .15 MacSPARTAN '10 Quantum Mechanics Program: (x86/Darwin) build 1.1.0v4 Job type: Geometry optimization. Method: RB3LYP Basis set: 6-311+G** Number of shells: 78 Number of basis functions: 208 Multiplicity: 1 SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Optimization: Step Energy Max Grad. Max Dist. 1 -326.036531 0.015778 0.081400 2 -326.039284 0.003119 0.121733 3 -326.039581 0.002056 0.117139 4 -326.039703 0.001005 0.052845 5 -326.039714 0.000225 0.012030 6 -326.039716 0.000082 0.006654 7 -326.039716 0.000066 0.003160 Reason for exit: Successful completion Quantum Calculation CPU Time : 12:30.85 Quantum Calculation Wall Time: 13:30.79 MacSPARTAN '10 Semi-Empirical Program: (x86/Darwin) build 1.1.0 Semi-empirical Property Calculation M0001 Guess from Archive Energy Due to Solvation Solvation Energy SM5.4/A -22.935 Memory Used: 584.71 Kb Reason for exit: Successful completion Semi-Empirical Program CPU Time : .02 Semi-Empirical Program Wall Time: .12 MacSPARTAN '10 Properties Program: (x86/Darwin) build 1.1.0 Reason for exit: Successful completion Properties CPU Time : .53 Properties Wall Time: .61 molecule M0001 terminated normally End- molecule "M0001" Mon Jan 19 14:37:23 2015 xyz coordinates:

N 0.582361 0.426356 0.038640

С	-0.479620	1.400128	-0.179070
С	-1.761855	0.613193	0.162212
С	-1.373125	-0.851695	-0.088803
С	0.148747	-0.874234	0.042343
Н	-0.477716	1.748493	-1.222354
Н	-0.339452	2.276275	0.461367
Н	-2.010847	0.759485	1.216005
Н	-2.615226	0.944760	-0.430594
Н	-1.620815	-1.180647	-1.103783
Н	-1.824060	-1.563122	0.603223
0	0.859595	-1.860922	0.113844
С	1.983360	0.784987	-0.020983
Н	2.232052	1.509991	0.760355
Н	2.239226	1.220455	-0.994661
Н	2.569808	-0.121316	0.127252

S5•BF₃

MacSPARTAN '10 MECHANICS PROGRAM: x86/Darwin 1.1.0 Frequency Calculation Reason for exit: Successful completion Mechanics CPU Time : .05 Mechanics Wall Time: .14 MacSPARTAN '10 Quantum Mechanics Program: (x86/Darwin) build 1.1.0v4 Job type: Geometry optimization. Method: RB3LYP Basis set: 6-311+G** Number of shells: 102 Number of basis functions: 296 Multiplicity: 1 SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Optimization: Step Energy Max Grad. Max Dist. 1 -650.570751 0.362821 0.211931 2 -650.672118 0.145027 0.144661 3 -650.700803 0.062322 0.178539 4 -650.700877 0.053256 0.151135 5 -650.707315 0.018114 0.209833 6 -650.704052 0.041649 0.150719 7 -650.709580 0.008856 0.116683 8 -650.709331 0.008370 0.061109 9 -650.710146 0.001300 0.054352 10 -650.710195 0.000590 0.056754 11 -650.710213 0.000372 0.019776

12 -650.710217 0.000072 0.003276 13 -650.710217 0.000035 0.000314 Reason for exit: Successful completion Quantum Calculation CPU Time : 1:08:18.52 Quantum Calculation Wall Time: 1:11:51.92 MacSPARTAN '10 Properties Program: (x86/Darwin) build 1.1.0 Reason for exit: Successful completion Properties CPU Time : 1.05 Properties Wall Time: 1.16 molecule M0001 terminated normally End- molecule "M0001" Mon Jan 19 21:13:45 2015

xyz coordinates:

Н	-2.059828	0.677133	1.701954
С	-2.078968	0.373672	0.654008
С	-1.655457	1.482184	-0.322943
С	-0.717255	0.772892	-1.315201
N	-0.065017	-0.328305	-0.527198
С	-1.098459	-0.761134	0.453953
Н	-3.077201	-0.023842	0.449259
Н	-1.123528	2.273532	0.201437
Н	-2.503292	1.927119	-0.844653
Н	-1.282166	0.311763	-2.130854
Н	0.051200	1.416967	-1.735906
0	-1.109955	-1.855695	0.924854
С	0.425061	-1.456529	-1.368369
Н	-0.384828	-1.825543	-2.001013
Н	0.775052	-2.249178	-0.713657
Н	1.247355	-1.093744	-1.981928
В	1.318342	0.301234	0.361410
F	0.786230	1.186810	1.274241
F	1.901336	-0.796637	0.927112
F	2.071432	0.904349	-0.619698

S5•H+

MacSPARTAN '10 MECHANICS PROGRAM: x86/Darwin 1.1.0
Frequency Calculation
Reason for exit: Successful completion
Mechanics CPU Time : .04
Mechanics Wall Time: .13
MacSPARTAN '10 Quantum Mechanics Program: (x86/Darwin) build 1.1.0v4
Job type: Geometry optimization.
Method: RB3LYP
Basis set: 6-311+G**
```
Number of shells: 82
Number of basis functions: 214
Charge : +1
Multiplicity: 1
SCF model:
A restricted hybrid HF-DFT SCF calculation will be
performed using Pulay DIIS + Geometric Direct Minimization
Optimization:
Step Energy Max Grad. Max Dist.
1 -326.354723 0.038528 0.096480
2 -326.369219 0.019246 0.099789
3 -326.371825 0.004837 0.086474
4 -326.372381 0.002230 0.066343
5 -326.372503 0.000370 0.059369
6 -326.372528 0.000256 0.039343
7 -326.372532 0.000200 0.023732
8 -326.372532 0.000063 0.004995
Reason for exit: Successful completion
Quantum Calculation CPU Time : 17:49.88
Quantum Calculation Wall Time: 19:14.52
MacSPARTAN '10 Semi-Empirical Program: (x86/Darwin) build 1.1.0
Semi-empirical Property Calculation
M0001
Guess from Archive
Energy Due to Solvation
Solvation Energy SM5.4/A -226.600
Memory Used: 631.34 Kb
Reason for exit: Successful completion
Semi-Empirical Program CPU Time : .02
Semi-Empirical Program Wall Time: .19
MacSPARTAN '10 Properties Program: (x86/Darwin) build 1.1.0
Reason for exit: Successful completion
Properties CPU Time : .62
Properties Wall Time: .72
molecule M0001 terminated normally
End- molecule "M0001" Mon Jan 19 20:19:25 2015
```

xyz coordinates:

С	-0.284695	-1.006024	-0.027035
N	-0.603523	0.513625	-0.446110
С	0.746284	1.176805	-0.582054
С	1.662365	0.391920	0.368807
С	1.187872	-1.062488	0.250709
Н	1.059683	1.067249	-1.621382
Н	0.659073	2.236142	-0.347221
Н	1.556362	0.749792	1.395192
Н	2.707182	0.514352	0.087498
Н	1.363244	-1.681477	1.132236
Н	1.652477	-1.580513	-0.598309
0	-1.169984	-1.774808	0.000464
С	-1.537358	1.146454	0.551008
Н	-1.820675	2.132659	0.186204

Н	-1.025606	1.233190	1.508302
Н	-2.415957	0.510961	0.650578
Н	-1.088533	0.466994	-1.344907

```
S6
MacSPARTAN '10 MECHANICS PROGRAM: x86/Darwin 1.1.0
Frequency Calculation
Reason for exit: Successful completion
Mechanics CPU Time : .03
Mechanics Wall Time: .37
MacSPARTAN '10 Quantum Mechanics Program: (x86/Darwin) build 1.1.0v4
Job type: Geometry optimization.
Method: RB3LYP
Basis set: 6-311+G**
Number of shells: 36
Number of basis functions: 106
Multiplicity: 1
SCF model:
A restricted hybrid HF-DFT SCF calculation will be
performed using Pulay DIIS + Geometric Direct Minimization
Optimization:
Step Energy Max Grad. Max Dist.
1 -207.977677 0.045213 0.202673
2 -207.987275 0.022160 0.219514
3 -207.991937 0.009886 0.267435
4 -207.993352 0.009322 0.211538
5 -207.993416 0.007629 0.226694
6 -207.994186 0.002621 0.039125
7 -207.994152 0.003671 0.016393
8 -207.994255 0.000954 0.016815
9 -207.994260 0.000730 0.010114
10 -207.994265 0.000247 0.005924
11 -207.994267 0.000201 0.005100
12 -207.994269 0.000096 0.003533
13 -207.994269 0.000013 0.000224
Reason for exit: Successful completion
Quantum Calculation CPU Time : 3:10.19
Quantum Calculation Wall Time: 3:44.37
MacSPARTAN '10 Semi-Empirical Program: (x86/Darwin) build 1.1.0
Semi-empirical Property Calculation
M0001
Guess from Archive
Energy Due to Solvation
Solvation Energy SM5.4/A -44.187
Memory Used: 140.20 Kb
```

Reason for exit: Successful completion Semi-Empirical Program CPU Time : .01 Semi-Empirical Program Wall Time: .17 MacSPARTAN '10 Properties Program: (x86/Darwin) build 1.1.0 Reason for exit: Successful completion Properties CPU Time : .14 Properties Wall Time: .24 molecule M0001 terminated normally End- molecule "M0001" Mon Jan 19 19:14:45 2015

xyz coordinates:

Н	-1.177306	1.068295	1.048292
С	-0.911919	0.686118	0.064964
С	0.401517	0.029306	-0.059199
N	-0.665741	-0.809240	-0.094377
Н	-1.436154	1.135630	-0.771122
Н	-0.869214	-1.487950	0.632335
0	1.596140	0.070749	-0.041247

S7

MacSPARTAN '10 MECHANICS PROGRAM: x86/Darwin 1.1.0 Frequency Calculation Adjusted 2 (out of 45) low frequency modes Reason for exit: Successful completion Mechanics CPU Time : .04 Mechanics Wall Time: .13 MacSPARTAN '10 Quantum Mechanics Program: (x86/Darwin) build 1.1.0v4 Job type: Geometry optimization. Method: RB3LYP Basis set: 6-311+G** Number of shells: 72 Number of basis functions: 186 Multiplicity: 1 SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Optimization: Step Energy Max Grad. Max Dist. 1 -287.916395 0.017863 0.087772 2 -287.918255 0.002996 0.126031 3 -287.918375 0.001549 0.065520 4 -287.918409 0.000731 0.098062 5 -287.918422 0.000453 0.066447 6 -287.918429 0.000374 0.035908

7 -287.918431 0.000108 0.024404 8 -287.918432 0.000065 0.008245 Reason for exit: Successful completion Quantum Calculation CPU Time : 11:25.83 Quantum Calculation Wall Time: 12:30.12 MacSPARTAN '10 Semi-Empirical Program: (x86/Darwin) build 1.1.0 Semi-empirical Property Calculation M0001 Guess from Archive Energy Due to Solvation Solvation Energy SM5.4/A -19.876 Memory Used: 468.84 Kb Reason for exit: Successful completion Semi-Empirical Program CPU Time : .02 Semi-Empirical Program Wall Time: .12 MacSPARTAN '10 Properties Program: (x86/Darwin) build 1.1.0 Reason for exit: Successful completion Properties CPU Time : .49 Properties Wall Time: .59 molecule M0001 terminated normally End- molecule "M0001" Mon Jan 19 00:46:02 2015

xyz coordinates:

С	0.729378	0.287472	-0.036109
N	-0.596941	-0.071653	-0.011676
0	1.082083	1.459491	-0.057324
С	-1.618677	0.966520	0.037442
Н	-2.331421	0.832676	-0.782995
H	-1.138006	1.937188	-0.052583
Н	-2.168843	0.922427	0.984755
С	-1.092073	-1.435612	0.076722
Н	-0.297314	-2.158007	-0.086187
Н	-1.862106	-1.602253	-0.684147
H	-1.540831	-1.630800	1.059127
С	1.763418	-0.830623	-0.044140
Н	1.665520	-1.467268	-0.927505
Н	1.683984	-1.465815	0.841884
Н	2.744546	-0.361074	-0.056100

S8

MacSPARTAN '10 MECHANICS PROGRAM: x86/Darwin 1.1.0 Frequency Calculation Adjusted 2 (out of 36) low frequency modes Reason for exit: Successful completion

```
Mechanics CPU Time : .04
Mechanics Wall Time: .18
MacSPARTAN '10 Quantum Mechanics Program: (x86/Darwin) build 1.1.0v4
Job type: Geometry optimization.
Method: RB3LYP
Basis set: 6-311+G**
Number of shells: 58
Number of basis functions: 152
Multiplicity: 1
SCF model:
A restricted hybrid HF-DFT SCF calculation will be
performed using Pulay DIIS + Geometric Direct Minimization
Optimization:
Step Energy Max Grad. Max Dist.
1 -248.604092 0.013606 0.099298
2 -248.605651 0.004238 0.078626
3 -248.605823 0.001355 0.003240
4 -248.605825 0.001309 0.209313
5 -248.605879 0.000449 0.128534
6 -248.605890 0.000652 0.029002
7 -248.605896 0.000300 0.024043
8 -248.605895 0.000067 0.001590
Reason for exit: Successful completion
Quantum Calculation CPU Time : 5:04.62
Quantum Calculation Wall Time: 5:41.51
MacSPARTAN '10 Semi-Empirical Program: (x86/Darwin) build 1.1.0
Semi-empirical Property Calculation
M0001
Guess from Archive
Energy Due to Solvation
Solvation Energy SM5.4/A -28.653
Memory Used: 304.39 Kb
Reason for exit: Successful completion
Semi-Empirical Program CPU Time : .01
Semi-Empirical Program Wall Time: .16
MacSPARTAN '10 Properties Program: (x86/Darwin) build 1.1.0
Reason for exit: Successful completion
Properties CPU Time : .28
Properties Wall Time: .38
molecule M0001 terminated normally
End- molecule "M0001" Mon Jan 19 13:54:29 2015
xyz coordinates:
С
         0.483374 -0.146587 -0.052371
```

N	-0.628505	0.641110	0.033356
н	-0.517070	1.641260	0.047232
С	-1.971735	0.082965	-0.017290
Н	-2.009267	-0.824275	0.585926
Н	-2.266776	-0.176254	-1.039089
Н	-2.676994	0.812071	0.383448
0	0.414389	-1.362778	-0.141050
С	1.814753	0.584046	-0.016795

Н	2.396709	0.206415	0.826232
Н	1.719047	1.668372	0.073574
Н	2.367928	0.349429	-0.928595

References

¹ Cyclobutanone N,N-dimethylhydrazone (bp 150 °C, 1 atm) was prepared according to: Mino,

T.; Masuda, S.; Nishio, M.; Yamashita, M. J. Org. Chem. 1997, 62, 2633-2635.

² 2-Bromo-1-tert-butyldimethylsilyloxy ethane was prepared according to: Kuwabe, S.; Torraca,

K. E.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 12202-12206

³ 2-(2-Hydroxyethyl) cyclobutanone was synthesized previously by hydroboration of 2vinylcyclobutanone dimethylacetal: Fadel, A.; Salaun, J. *Tetrahedron* **1985**, *41*, 413-420.

⁴ Procedure adapted from: MacLeod, F.; Lang, S.; Murphy, J. A. Synlett 2010, 529-534.

⁵ 1-Tosyl-4-piperidinecarboxylic acid is commercially available (*e.g.* from abcr, Germany; CAS 147636-36-0).

⁶ EF: electric field scan.

⁷ EF: electric field scan.

⁸ Isonipecotic acid tetrafluoroborate (11) was isolated as a colorless oil under air moisture. However, slow diffusion of Et_2O into a solution of 11 in CH₃CN at -40 °C over 2 weeks led to precipitation of the salt as a colorless, fluffy solid.

⁹ EF: electric field scan.

¹⁰ Sheldrick, G. M. Acta Cryst. **1990**, A46, 467-473.

¹¹ Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

¹² Müller, P. Crystallography Reviews 2009, 15, 57-83.