

Supporting Information

Nickel-Catalyzed Intramolecular C–O Bond Formation: Synthesis of Cyclic Enol Ethers

Seo-Jung Han, Ryohei Doi, and Brian M. Stoltz*

anie_201601991_sm_miscellaneous_information.pdf

Table of Contents:

Materials and Methods	SI-2
Experimental Procedures and Spectroscopic Data	SI-3
Typical procedure for aminocyclohexanols 4	SI-5
Representative procedure for cross-coupling of aminocyclohexanols 4	SI-5
Typical procedure for linear aminoalcohols 6	SI-13
Representative procedure for cross-coupling of linear aminoalcohols 6	SI-13
Typical procedure for malonate substrates 8	SI-16
Representative procedure for cross-coupling of malonates 8	SI-17
¹ H NMR and ¹³ C NMR Spectra	SI-24

Materials and Methods.

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Reaction progress was monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS. THF, Et₂O, CH₂Cl₂, toluene, benzene, CH₃CN, and dioxane were dried by passage through an activated alumina column under argon. Purified water was obtained using a Barnstead NANOpure Infinity UV/UF system. Brine solutions are saturated aqueous solutions of sodium chloride. Commercially available reagents were purchased from Sigma-Aldrich, Acros Organics, TCI, Oakwood chemicals, Strem, or Alfa Aesar and used as received unless otherwise stated. Ni(COD)₂ and NiI₂ were purchased from Strem. NiBr₂(dme) was purchases from Aldrich. Zinc dust or powder purchased from Aldrich worked well for the reaction but Zinc powder (99.999%) purchased from Strem gave poor conversion. Reaction temperatures were controlled by an IKAmag temperature modulator unless otherwise indicated. Glove box manipulations were performed under a N₂ atmosphere. TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, p-anisaldehyde, KMnO₄ or PMA (phosphomolybdic acid) staining. Silicycle SiliaFlash P60 Academic Silica gel (particle size 0.040-0.064 mm) was used for flash column chromatography. ¹H NMR spectra were recorded on a Varian Mercury 300 MHz, a Bruker AV III HD 400 MHz spectrometer equipped with a Prodigy liquid nitrogen temperature cryoprobe, Varian Inova 500 MHz, and 600 MHz spectrometers and are reported relative to residual CHCl₃ (§ 7.26 ppm), CHDCl₂ (δ 5.32) or C₆HD₆ (δ 7.16 ppm), ¹³C NMR spectra are recorded on a Varian Mercury 300 MHz, a Bruker AV III HD 400 MHz spectrometer equipped with a Prodigy liquid nitrogen temperature cryoprobe, Varian Inova 500 MHz, and 600 MHz spectrometers (75 MHz, 126 MHz, and 151 MHz, respectively) and are reported relative to CHCl₃ (δ 77.16 ppm), CHDCl₂ (δ 53.84) or C₆HD₅ (δ 128.06 ppm). ¹⁹F NMR spectra are recorded on a Varian Mercury 300 MHz (at 282 MHz). ¹⁹F NMR spectra are reported relative to $CFCl_3(\delta 0.0 \text{ ppm})$. Data for ¹H NMR are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d= broad doublet, app = apparent. Data for ${}^{13}C$ are reported in terms of chemical shifts (δ ppm). IR spectra were obtained using a Perkin Elmer Paragon 1000 spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption (cm⁻¹). High resolution mass spectra (HRMS) were obtained from the Caltech Mass Spectral Facility using JEOL JMS-600H High Resolution Mass Spectrometer in fast atom bombardment (FAB+) or electron ionization (EI+) mode, or Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+).

Experimental Procedures and Spectroscopic Data

To a solution of amine **SI-1** (6.66 g, 68.5 mmol, 1.00 equiv), which was prepared by the literature procedure¹, in MeOH (171 mL) were added *p*-methoxybenzaldehyde (10.0 mL, 82.3 mmol, 1.20 equiv) and 3Å MS (18.8 g). The reaction mixture was stirred at 23 °C for 17 h. Then, NaBH₄ (5.20g, 0.137 mol, 2.00 equiv) was added to the solution at 0 °C. The solution was stirred at 23 °C for 12 h. After the reaction was done, water (40 mL) was added at 0 °C. The aqueous phase was extracted with EtOAc (3 x 80.0 mL). The combined organic phases were washed with brine, dried over MgSO₄ and concentrated *in vacuo* to give the PMB-amine, which was used without further purification.

A solution of propiolic acid (4.64 mL, 75.4 mmol, 1.10 equiv) in CH_2Cl_2 (343 mL) was cooled to 0 °C. DCC (15.6g, 75.4 mmol, 1.10 equiv) and the PMB-amine (68.5 mmol, 1.00 equiv) were added to the reaction mixture sequentially. The mixture was warmed to 23 °C and stirred for 30 min. The solvent was evaporated and the residue was purified by flash column chromatography (1:4 EtOAc:hexanes) on silica gel to give amide **SI-2** (12.0g, 65% yield, 2 steps).

To a stirred solution of amide SI-2 (12.0 g, 44.6 mmol, 1.00 equiv) in toluene (558 mL) was added solid NaHCO₃ (4.50g, 53.5 mmol, 1.20 equiv). The reaction mixture was heated to 120 °C for 48 h. After the reaction was done, water (200 mL) was added. The aqueous phase was extracted with EtOAc (3 x 120 mL). The combined organic phases were washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (1:4 EtOAc:hexanes) on silica gel to give lactam SI-3 (9.25g, 77% yield).

To a stirred solution of lactam SI-3 (339 mg, 1.26 mmol, 1.00 equiv) in CH₂Cl₂ (6.30 mL) at 0 °C was added *m*-CPBA (\leq 77%, 1.89 mmol, 424 mg, 1.50 equiv), and the mixture was stirred for 3 h at 23 °C. The reaction mixture was quenched with sat.

¹ (a) Miller, C. A.; Batey, R. A. *Org. Lett.* **2004**, *6*, 699–702. (b) Grieco, P. A.; Galatsis, P.; Spohn, R. F. *Tetrahedron* **1986**, *42*, 2847–2853. (c) Nieto-García, O.; Alonso, R. J. Org. Chem. **2013**, *78*, 2564–2570.

To a solution of epoxide (1.26 mmol, 1.00 equiv) in MeOH (6.30 mL) was added aq MeNH₂ (40 wt.% in H₂O, 12.6 mmol, 10.9 mL, 10.0 equiv). The reaction mixture was stirred at 80 °C for 12 h. After the reaction was done, water (6.00 mL) was added. The aqueous phase was extracted with EtOAc (3 x 8.00 mL). The combined organic phases were washed with brine, dried over MgSO₄ and concentrated *in vacuo* to afford the aminoalcohol, which was used without further purification.

To a solution of the aminoalcohol (1.26 mmol, 1.00 equiv) in THF (3.15 mL) and DMF (3.15 mL) were added 4Å MS (443 mg), (*E*)-1-bromo-2-iodobut-2-ene (411 mg, 1.58 mmol, 1.25 equiv) and Cs_2CO_3 (415 mg, 1.27 mmol, 1.01 equiv) at 23 °C. The reaction mixture was stirred at 23 °C for 24 h. The resulting suspension was filtered and washed with EtOAc (5.00 mL). The combined organic phases were extracted with EtOAc (3 x 6.00 mL). The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (2:1 EtOAc:hexane) on silica gel to give vinyl iodide 1 (375 mg, 60% yield, 3 steps).

¹H NMR (500 MHz, CDCl₃) δ 7.20 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 6.75 (dt, J = 6.7, 2.1 Hz, 1H), 6.47 – 6.41 (m, 1H), 4.71 (d, J = 14.4 Hz, 1H), 4.41 (d, J = 14.4 Hz, 1H), 3.96 – 3.89 (m, 2H), 3.80 (s, 3H), 3.35 – 3.27 (m, 2H), 3.20 (d, J = 13.6 Hz, 1H), 3.11 (d, J = 13.6 Hz, 1H), 2.99 – 2.91 (m, 1H), 2.61 (td, J = 10.7, 4.4 Hz, 1H), 2.39 – 2.26 (m, 2H), 2.22 (s, 3H), 2.20 – 2.14 (m, 1H), 1.74 (d, J = 7.1 Hz, 3H), 1.56 – 1.45 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.3, 159.1, 139.0, 133.7, 130.3, 129.6, 129.5, 114.1, 103.3, 66.8, 60.1, 57.3, 55.4, 49.7, 46.9, 39.3, 35.6, 23.8, 22.3, 17.1; IR (Neat Film NaCl) 3416, 2927, 1663, 1613, 1512, 1454, 1246, 1175, 1034, 817, 732 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₂H₃₀IN₂O₃ [M+H]⁺: 497.1296; found: 497.1296.

To a solution of vinyl iodide 1 (20.0 mg, 0.0402 mmol, 1.00 equiv) and Et_3N (56.0 μ L, 0.402 mmol, 10.0 equiv) in CH₃CN (2.01 mL) and DMF (1.01 mL) in a scintillation vial at 23 °C was added Ni(COD)₂ (6.00 mg, 0.0201 mmol, 0.50 equiv) in a nitrogenfilled glove box. The reaction mixture was stirred at 23 °C for 120 min, and then, BHT (18.0 mg, 0.0804 mmol, 2.00 equiv) was added. After being stirred for 20 min, the vial was removed from the glovebox and uncapped. Saturated NaHCO₃ aqueous solution was added and the mixture was extracted with Et₂O (3 x 2.00 mL), the combined organic phase was washed with brine, dried over MgSO₄, filtered and

concentrated *in vacuo*. The residue was purified by silica gel flash chromatography $(1:20 \text{ MeOH:}CH_2Cl_2)$ to give morpholine derivative **3** (7.85 mg, 53% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.66 (dt, J = 6.8, 1.9 Hz, 1H), 5.03 (qd, J = 7.1, 1.4 Hz, 1H), 4.63 (d, J = 14.4 Hz, 1H), 4.48 (d, J = 14.4 Hz, 1H), 3.78 (s, 3H), 3.76 (d, J = 7.1 Hz, 1H), 3.54 (d, J = 12.5 Hz, 1H), 3.29 – 3.24 (m, 2H), 2.86 – 2.74 (m, 1H), 2.68 – 2.60 (m, 2H), 2.32 (s, 3H), 2.30 – 2.24 (m, 1H), 2.12 – 1.96 (m, 2H), 1.58 (dd, J = 7.1, 1.3 Hz, 3H), 1.55 – 1.49 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.0, 158.9, 148.5, 133.5, 129.5, 129.0, 113.9, 103.5, 77.8, 58.4, 52.2, 49.5, 46.6, 42.4, 37.9, 28.9, 24.3, 11.0; IR (Neat Film NaCl) 3416, 2927, 1663, 1613, 1512, 1454, 1246, 1175, 1034, 817, 732 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₂H₂₉N₂O₃ [M+H]⁺: 369.2173; found: 369.2212.

Typical procedure for aminocyclohexanols 4

To a scintillation vial were added cyclohexene oxide **SI-4** (5.09 mmol, 1.00 equiv), R^1NH_2 (5.09 mmol, 1.00 equiv), and MeOH (2.50 mL). The reaction mixture was heated to 80 °C for 12 h. The solvent was evaporated to give the corresponding aminocyclohexanols **SI-5**, which were used without further purification.

To a solution of aminocyclohexanols **SI-5** (5.09 mmol, 1.00 equiv) in MeCN (25.0 mL) were added K_2CO_3 (25.5 mmol, 5.00 equiv) and allyl bromides (5.60 mmol, 1.10 equiv). The reaction mixture was stirred for 12 h at 23 °C. Solids were removed via a filtration through a celite plug and the resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography, using mixture of hexanes and ethyl acetate as eluent to furnish the product **4**.

Representative procedure for cross-coupling of aminocyclohexanols 4

Ni-Catalyzed C–O bond formation experiments were performed in a nitrogen-filled glove box. To a solution of aminocyclohexanol **4c** (50.0 mg, 0.135 mmol, 1.00 equiv) in MeCN (0.900 mL) in a scintillation vial were added Et₃N (21.0 μ L, 0.149 mmol, 1.10 equiv), Zn powder (17.7 mg, 0.270 mmol, 2.00 equiv), and Ni(COD)₂ (1.90 mg, 0.00673 mmol, 0.05 equiv). The reaction mixture was stirred at 23 °C for

24 h. After the reaction was done, the vial was removed from the glove box and uncapped. Solids were removed via a filtration through a celite plug and the resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography (1:2 EtOAc:hexanes) to give 5c (30.7 mg, 93% yield).

¹H NMR (500 MHz, CDCl₃) δ 6.41 (q, J = 7.1 Hz, 1H), 4.03 (s, 1H), 3.40 (td, J = 9.8, 4.5 Hz, 1H), 3.15 (d, J = 13.7 Hz, 1H), 3.08 (d, J = 13.9 Hz, 1H), 2.26 (ddd, J = 14.0, 10.2, 3.6 Hz, 1H), 2.18 (s, 3H), 2.15 – 2.11 (m, 1H), 1.79 (dt, J = 8.9, 2.0 Hz, 2H), 1.73 (d, J = 7.2 Hz, 3H), 1.31 – 1.17 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 138.3, 104.4, 69.3, 68.7, 57.3, 35.7, 33.3, 25.6, 24.2, 22.8, 17.0; IR (Neat Film NaCl) 3467, 2930, 2855, 1449, 1282, 1080, 1037 cm⁻¹; HRMS (MM: FAB+) *m/z* calc'd for C₁₁H₂₁NOI [M+H]⁺: 310.0668; found: 310.0654.

¹H NMR (400 MHz, CDCl₃) δ 5.02 (qd, J = 7.1, 1.6 Hz, 1H), 3.58 (d, J = 12.6 Hz, 1H), 3.35 – 3.23 (m, 1H), 2.62 (d, J = 12.6 Hz, 1H), 2.29 (s, 3H), 2.09 (dtd, J = 12.9, 3.7, 2.0 Hz, 1H), 1.94 (ddt, J = 11.9, 4.5, 2.6 Hz, 1H), 1.85 (s, br, 1H), 1.77 – 1.71 (m, 2H), 1.56 (dd, J = 7.1, 1.5 Hz, 3H), 1.42 – 1.33 (m, 1H), 1.33 – 1.22 (m, 2H), 1.14 – 1.02 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 148.9, 103.3, 81.1, 67.4, 53.0, 42.0, 31.4, 28.1, 24.8, 24.4, 11.1; IR (Neat Film NaCl) 2934, 2861, 2779, 1682, 1451, 1192, 1108, 841 cm⁻¹; HRMS (MM: FAB+) *m/z* calc'd for C₁₁H₂₀NO [M+H]⁺: 182.1545; found: 182.1538.

¹H NMR (300 MHz, CDCl₃) δ 6.28 (q, J = 1.4 Hz, 1H), 5.86 (dt, J = 0.8, 1.6 Hz, 1H), 3.97 (s, 1H), 3.40 (m, 1H), 3.17 (d, J = 13.7 Hz, 1H), 2.96 (d, J = 13.7 Hz, 1H), 2.28 (m, 1H), 2.18 (s, 3H), 2.13 (m, 1H), 1.75 (m, 3H), 1.20 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 126.8, 113.7, 69.3, 69.1, 64.8, 35.8, 33.1, 25.4, 24.0, 22.6; IR (neat film NaCl) 3470, 2930, 2855, 2796, 1616, 1448, 1079, 1036 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₀H₁₉INO, [M+H]⁺: 296.0506; found: 296.0499. ¹H NMR (300 MHz, CDCl₃) δ 4.40 (s, 1H), 4.16 (s, 1H), 3.36 (ddd, J = 2.5, 5.4, 6.7 Hz, 1H), 3.25 (d, J = 7.5 Hz, 1H), 2.81 (7.5 Hz, 1H), 2.24 (s, 3H), 2.09 (m, 1H), 1.98 (m, 1H), 1.84 – 1.73 (m, 3H), 1.43 – 1.07 (m, m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 156.1, 91.9, 81.1, 66.8, 57.9, 41.7, 31.3, 28.1, 24.3, 24.3; IR (neat film NaCl) 2929, 2858, 2770, 1747, 1653, 1277, 1229, 1074 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₀H₁₈NO, [M+H]⁺ : 168.1383; found: 168.1385.

¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.50 (m, 2H), 7.40 – 7.29 (m, 3H), 6.97 (s, 1H), 4.04 (s, 1H), 3.52 – 3.41 (m, 2H), 3.27 (dd, *J* = 13.5, 1.1 Hz, 1H), 2.42 – 2.29 (m, 1H), 2.24 (s, 3H), 2.19 – 2.11 (m, 1H), 1.79 (dd, *J* = 6.9, 3.9 Hz, 2H), 1.75 – 1.64 (m, 1H), 1.35 – 1.15 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 137.4, 135.7, 128.8, 128.3, 128.2, 109.0, 69.5, 69.3, 66.8, 35.8, 33.3, 25.6, 24.2, 22.9; IR (neat film NaCl) 3467, 2930, 2855, 1446, 1079, 1058, 1033, 750, 695 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₆H₂₃INO, [M+H]⁺ : 372.0819; found: 372.0859.

¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.53 (m, 2H), 7.32 – 7.25 (m, 2H), 7.17 – 7.11 (m, 1H), 5.44 (d, *J* = 1.7 Hz, 1H), 3.53 (ddd, *J* = 11.5, 9.1, 4.3 Hz, 1H), 3.32 (d, *J* = 12.8 Hz, 1H), 3.00 (dd, *J* = 12.8, 1.6 Hz, 1H), 2.29 (s, 3H), 2.13 (ddtd, *J* = 12.5, 6.2, 4.3, 3.8, 2.1 Hz, 2H), 1.93 (td, *J* = 10.2, 9.1, 3.9 Hz, 1H), 1.79 (ddt, *J* = 13.0, 10.3, 2.9 Hz, 2H), 1.60 – 1.49 (m, 1H), 1.41 – 1.24 (m, 2H), 1.20 – 1.07 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 136.0, 128.5, 128.2, 126.0, 107.5, 80.8, 67.0, 59.2, 41.7, 31.4, 28.3, 24.7, 24.4; IR (neat film NaCl) 2935, 2860, 2774, 1664, 1449, 1342, 1179, 1060, 1032, 694 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₆H₂₂NO, [M+H]⁺ : 244.1696; found: 244.1716.

¹H NMR (400 MHz, CDCl₃) δ 6.29 (s, 1H), 5.87 (s, 1H), 3.90 (s, 1H), 3.36 – 3.21 (m, 2H), 3.02 (td, J = 13.7, 6.6 Hz, 2H), 2.39 (d, J = 10.5 Hz, 1H), 2.19 – 2.09 (m, 1H), 1.73 (q, J = 10.1 Hz, 3H), 1.35 – 1.17 (m, 4H), 1.14 (d, J = 6.8 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 127.2, 116.0, 69.3, 61.7, 57.4, 48.1, 33.2, 28.0, 26.1, 24.4, 22.9, 18.0; IR (neat film NaCl) 2930, 1614, 1173, 1080, 896 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₂H₂₃NOI, [M+H]⁺ : 324.0819; found: 324.0845.

¹H NMR (400 MHz, C₆D₆) δ 4.64 (d, J = 1.1 Hz, 1H), 4.12 (d, J = 1.5 Hz, 1H), 3.48 (ddd, J = 11.1, 8.9, 4.3 Hz, 1H), 3.23 (d, J = 12.7 Hz, 1H), 3.07 (p, J = 6.6 Hz, 1H), 2.89 (dt, J = 12.7, 1.4 Hz, 1H), 2.14 (ddd, J = 10.8, 8.9, 3.9 Hz, 1H), 2.02 – 1.93 (m, 1H), 1.75 (dq, J = 13.6, 2.9, 2.4 Hz, 1H), 1.48 – 1.33 (m, 4H), 0.99 (s, 3H), 0.96 – 0.79 (m, 2H), 0.65 (s, 3H). ¹³C NMR (101 MHz, C₆D₆) δ 158.4, 89.6, 81.0, 62.1, 46.7, 45.8, 31.8, 28.1, 25.0, 24.4, 21.4, 12.4; IR (neat film NaCl) 2933, 1657, 1450, 1280, 1175, 1075, 800 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₂H₂₂NO, [M+H]⁺ : 196.1696; found: 196.1697.

¹H NMR (500 MHz, CDCl₃) δ 6.29 (d, J = 1.8 Hz, 1H), 5.92 – 5.81 (m, 2H), 5.23 – 5.10 (m, 2H), 3.83 (s, 1H), 3.41 (td, J = 9.9, 4.5 Hz, 1H), 3.34 (d, J = 14.2 Hz, 1H), 3.31 – 3.23 (m, 1H), 2.94 (dd, J = 14.1, 8.4 Hz, 1H), 2.88 (d, J = 14.2 Hz, 1H), 2.41 (ddd, J = 12.7, 9.9, 3.4 Hz, 1H), 2.13 (ddq, J = 12.2, 4.6, 2.0 Hz, 1H), 1.85 – 1.74 (m, 2H), 1.71 – 1.68 (m, 1H), 1.32 – 1.16 (m, 3H), 1.15 – 1.03 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 136.4, 127.6, 117.9, 113.9, 69.1, 64.9, 60.4, 52.4, 33.2, 25.7, 24.2, 23.5; IR (neat film NaCl) 2930, 2856, 1615, 1450, 1157, 1078, 917 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₂H₂₁NIO, [M+H]⁺ : 322.0662; found: 322.0668.

¹H NMR (500 MHz, CDCl₃) δ 5.86 (dddd, J = 17.1, 10.2, 8.0, 5.4 Hz, 1H), 5.24 – 5.16 (m, 2H), 4.38 (dt, J = 1.3, 0.7 Hz, 1H), 4.13 (dd, J = 1.6, 0.7 Hz, 1H), 3.48 (ddt, J = 13.6, 5.4, 1.6 Hz, 1H), 3.45 – 3.40 (m, 1H), 3.35 (d, J = 12.9 Hz, 1H), 2.88 – 2.79

(m, 2H), 2.17 – 2.04 (m, 2H), 1.99 (dddd, J = 10.2, 4.8, 3.9, 2.4 Hz, 1H), 1.79 – 1.69 (m, 2H), 1.46 – 1.37 (m, 1H), 1.35 – 1.21 (m, 2H), 1.12 (q, J = 12.3, 11.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.4, 134.3, 118.8, 91.6, 80.8, 64.6, 56.0, 53.7, 31.5, 28.2, 24.8, 24.3; IR (neat film NaCl) 2935, 2862, 1657, 1280, 1075, 839 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₂H₂₀NO, [M+H]⁺ : 194.1539; found: 194.1542.

¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 6.32 (d, *J* = 1.7 Hz, 1H), 5.90 (t, *J* = 1.4 Hz, 1H), 3.80 (s, 3H), 3.81 – 3.74 (m, 2H), 3.44 (td, *J* = 9.8, 4.6 Hz, 1H), 3.36 (d, *J* = 13.9 Hz, 1H), 3.28 (d, *J* = 13.2 Hz, 1H), 2.92 (d, *J* = 14.0 Hz, 1H), 2.42 – 2.29 (m, 1H), 2.13 – 2.04 (m, 1H), 1.90 – 1.81 (m, 1H), 1.75 (ddd, *J* = 6.7, 4.4, 2.3 Hz, 1H), 1.70 – 1.63 (m, 1H), 1.25 – 1.04 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 159.0, 130.6, 130.5, 128.1, 113.9, 113.5, 68.9, 63.6, 60.5, 55.4, 52.8, 33.3, 25.6, 24.2, 22.6; IR (neat film NaCl) 3483, 2931, 2855, 1612, 1511, 1247, 1036, 813 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₇H₂₅INO₂, [M+H]⁺ : 402.0924; found: 402.0934.

¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 8.3 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 4.33 (s, 1H), 4.09 – 3.96 (m, 2H), 3.81 (s, 3H), 3.51 (s, br, 1H), 3.19 (d, *J* = 13.0 Hz, 1H), 3.09 (d, *J* = 12.9 Hz, 1H), 2.71 (d, *J* = 13.0 Hz, 1H), 2.21 (d, *J* = 12.9 Hz, 1H), 2.13 (s, br, 1H), 2.06 – 1.96 (m, 1H), 1.84 – 1.72 (m, 2H), 1.50 – 1.36 (m, 1H), 1.32 (qd, *J* = 11.1, 9.7, 5.6 Hz, 2H), 1.22 (d, *J* = 22.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 156.5, 130.4, 130.2, 113.8, 91.1, 80.4, 65.2, 56.5, 55.4, 53.4, 31.6, 28.7, 24.8, 24.4; IR (neat film NaCl) 2935, 2861, 1733, 1674, 1611, 1511, 1246, 1036, 843 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₇H₂₄NO₂, [M+H]⁺ : 274.1802; found: 274.1820.

¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 8.4, 5.6 Hz, 2H), 7.01 (t, J = 8.7 Hz, 2H), 6.33 (s, 1H), 5.91 (t, J = 1.4 Hz, 1H), 3.80 (d, J = 13.3 Hz, 1H), 3.73 (s, br, 1H), 3.45

(td, J = 9.7, 4.6 Hz, 1H), 3.35 (t, J = 12.6 Hz, 2H), 2.95 (d, J = 13.9 Hz, 1H), 2.33 (d, J = 10.4 Hz, 1H), 2.14 – 2.04 (m, 1H), 1.92 – 1.83 (m, 1H), 1.81 – 1.72 (m, 1H), 1.67 (dt, J = 7.8, 2.8 Hz, 1H), 1.25 – 1.06 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (d, J = 245.2 Hz), 134.2, 131.1 (d, J = 8.0 Hz), 128.4, 115.5 (d, J = 21.3 Hz), 113.1, 68.9, 63.8, 60.6, 52.7, 33.3, 25.5, 24.2, 22.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -115.5; IR (neat film NaCl) 3485, 2930, 2856, 1602, 1508, 1221, 1152, 1073, 818 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₆H₂₂FNOI, [M+H]⁺ : 390.0725; found: 390.0732.

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.25 (m, 2H), 7.08 – 6.93 (m, 2H), 4.34 (s, 1H), 4.04 (d, J = 13.1 Hz, 1H), 3.99 (d, J = 1.5 Hz, 1H), 3.50 (tt, J = 11.8, 10.9, 4.1 Hz, 2H), 3.16 (d, J = 13.0 Hz, 1H), 3.08 (d, J = 13.2 Hz, 1H), 2.72 (d, J = 12.9 Hz, 1H), 2.24 – 2.05 (m, 2H), 2.07 – 1.94 (m, 1H), 1.87 – 1.66 (m, 2H), 1.53 – 1.35 (m, 1H), 1.38 – 1.24 (m, 1H), 1.24 – 1.13 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 162.1 (d, J = 244.7 Hz), 156.3, 134.3, 130.1 (d, J = 6.1 Hz), 115.3 (d, J = 20.9 Hz), 91.2, 80.5, 65.3, 56.4, 53.6, 31.6, 28.8, 24.8, 24.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -116.0; IR (neat film NaCl) 2936, 2862, 1736, 1673, 1604, 1508, 1222, 1075, 821 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₆H₂₁FNO, [M+H]⁺ : 262.1602; found: 262.1629.

¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.7 Hz, 2H), 7.27 (d, *J* = 7.7 Hz, 2H), 6.33 (s, br, 1H), 5.91 (t, *J* = 1.6 Hz, 1H), 3.78 (d, *J* = 13.3 Hz, 1H), 3.71 (s, br, 1H), 3.53 – 3.41 (m, 1H), 3.42 – 3.26 (m, 2H), 2.95 (d, *J* = 14.0 Hz, 1H), 2.33 (s, br, 1H), 2.08 (dd, *J* = 9.6, 4.3 Hz, 1H), 1.94 – 1.54 (m, 3H), 1.27 – 1.03 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 137.5, 131.7, 131.2, 128.6, 121.4, 112.9, 69.0, 63.9, 60.6, 52.9, 33.3, 25.5, 24.2, 22.6; IR (neat film NaCl) 3486, 2930, 2855, 1615, 1486, 1450, 1403, 1152, 1071, 1011, 799 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₆H₂₂BrNOI, [M+H]⁺: 449.9924; found: 449.9937.

¹H NMR (500 MHz, CD₂Cl₂) δ 7.44 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 4.24 (d, J = 1.1 Hz, 1H), 4.02 (d, J = 13.4 Hz, 1H), 3.93 (d, J = 1.5 Hz, 1H), 3.44 (ddd, J = 11.2, 8.7, 4.2 Hz, 1H), 3.13 (d, J = 12.9 Hz, 1H), 3.02 (d, J = 13.5 Hz, 1H), 2.69 (dt, J = 12.9, 1.5 Hz, 1H), 2.18 – 2.07 (m, 2H), 2.02 – 1.91 (m, 1H), 1.75 (tdd, J =10.4, 5.5, 2.5 Hz, 2H), 1.47 – 1.34 (m, 1H), 1.36 – 1.22 (m, 2H), 1.19 – 1.06 (m, 1H); ¹³C NMR (126 MHz, CD₂Cl₂) δ 157.1, 138.9, 131.8, 131.2, 121.0, 90.7, 81.0, 65.8, 56.9, 54.2, 31.9, 29.1, 25.2, 24.7; IR (neat film NaCl) 2935, 2861, 1654, 1486, 1280, 1074, 1012, 843, 802 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₆H₂₁BrNO, [M+H]⁺ : 322.0801; found: 322.0817.

¹H NMR (500 MHz, CDCl₃) δ 6.28 (s, 1H), 5.84 (s, 1H), 3.83 (s, 1H), 3.66 (td, J = 6.2, 2.2 Hz, 2H), 3.38 (td, J = 9.9, 4.4 Hz, 1H), 3.29 (d, J = 14.1 Hz, 1H), 2.91 (d, J = 14.2 Hz, 1H), 2.65 (dt, J = 13.0, 8.0 Hz, 1H), 2.43 (ddd, J = 13.1, 7.4, 5.8 Hz, 1H), 2.34 (ddd, J = 12.6, 9.8, 3.3 Hz, 1H), 2.17 – 2.08 (m, 1H), 1.82 – 1.72 (m, 2H), 1.71 (dt, J = 8.4, 6.0 Hz, 3H), 1.32 – 1.14 (m, 3H), 1.10 (tt, J = 12.2, 5.9 Hz, 1H), 0.89 (d, J = 0.9 Hz, 9H), 0.05 (s, 3H), 0.05 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 127.3, 114.2, 69.1, 65.6, 61.6, 61.4, 46.1, 33.3, 31.9, 26.1, 25.7, 24.3, 23.1, 18.4, -5.11, -5.13; IR (neat film NaCl) 3489, 2929, 2856, 1255, 1097, 835, 775 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₈H₃₇INO₂Si, [M+H]⁺ : 454.1633; found: 454.1658.

¹H NMR (400 MHz, CDCl₃) δ 4.38 (s, 1H), 4.13 (s, 1H), 3.63 (td, J = 6.2, 2.2 Hz, 2H), 3.47 – 3.31 (m, 2H), 2.94 – 2.79 (m, 2H), 2.34 (s, br, 1H), 2.15 – 2.04 (m, 2H), 1.98 (ddq, J = 11.8, 4.4, 2.4, 1.9 Hz, 1H), 1.79 – 1.59 (m, 5H), 1.46 – 1.21 (m, 3H), 0.89 (s, 9H), 0.04 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 91.4, 80.9, 64.6, 61.4, 53.8, 49.3, 31.5, 28.9, 28.3, 26.1, 24.8, 24.3, 18.4, -5.15, -5.17; IR (neat film NaCl) 2931, 2857, 1739, 1674, 1463, 1256, 1094, 838, 776 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₈H₃₆NO₂Si, [M+H]⁺ : 326.2510; found: 326.2544.

A solution of cyclohexanol **4b** (500 mg, 1.69 mmol, 1.00 equiv) in toluene (1.20 mL) was added to a cooled solution of PPh₃ (532 mg, 2.03 mmol, 1.20 equiv) and benzoic acid (248 mg, 2.03 mmol, 1.20 equiv) in toluene (8.45 mL) at -40 °C. Then, DEAD in toluene (40 wt% in toluene, 0.92 mL, 1.20 equiv) was added dropwise to a solution over 20 min at -40 °C. After stirring for 1.5 h at -40 °C, the solution was warm to 23 °C. After being stirred for 18 h, saturated NaHCO₃ aqueous solution was added and the mixture was extracted with EtOAc (3 x 7.00 mL). The combined organic phase was washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash chromatography (1:20 EtOAc:hexanes) to give benzoate **SI-6** (142 mg, 21% yield, 65% yield based on recovered starting material). ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, *J* = 7.1 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 6.25 (s, 1H), 5.73 (s, 1H), 5.10 (td, *J* = 10.4, 4.6 Hz, 1H), 3.29 (d, *J* = 15.1 Hz, 1H), 1.82 (d, *J* = 13.1 Hz, 1H), 1.83 – 1.72 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.92 (d, *J* = 13.1 Hz, 1H), 1.83 – 1.72 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.83 – 1.72 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.81 – 1.20 (m, 1H), 1.92 (m, 1H), 1.83 – 1.72 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.81 – 1.20 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.81 – 1.20 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.81 – 1.20 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.81 – 1.20 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.81 – 1.20 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.81 – 1.20 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.81 – 1.20 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.81 – 1.20 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.81 – 1.20 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.81 – 1.20 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.81 – 1.20 (m, 2H), 1.40 (dddd, *J* = 17.5, 1 Hz, 1H), 1.40 (m, 2H), 1.40 (m, 2H) = 10.4 (m, 2H), 1.40 (m, 2H) = 10.4 (

10.7, 8.0, 3.7 Hz, 2H), 1.35 – 1.23 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 132.9, 131.0, 129.9, 128.4, 125.5, 113.4, 73.5, 67.3, 65.8, 36.2, 32.2, 27.4, 25.3, 24.5; IR (Neat Film NaCl) 2934, 2858, 1714, 1450, 1317, 1273, 1175, 1106, 710 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₇H₂₃INO₂ [M+H]⁺ : 400.0768; found: 400.0769.

A solution of benzoate **SI-6** (140 mg, 0.351 mmol, 1.00 equiv) in MeOH (1.80 mL) and H₂O (0.20 mL) was treated with NaOH (28 mg, 0.701 mmol, 2.00 equiv) at 60 °C. After 1 h and 45 min, the solution was poured into H₂O and the mixture was extracted with CH_2Cl_2 (3 x 3.00 mL). The combined organic phase was washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash chromatography (1:8 EtOAc:hexanes) to give cyclohexanol **4j** (58 mg, 56% yield).

¹H NMR (400 MHz, CDCl₃) δ 6.28 (q, *J* = 1.4 Hz, 1H), 5.86 (dt, *J* = 1.6, 0.8 Hz, 1H), 3.96 (s, 1H), 3.40 (td, *J* = 9.9, 4.5 Hz, 1H), 3.17 (d, *J* = 13.8 Hz, 1H), 2.95 (d, *J* = 13.8 Hz, 1H), 2.28 (ddd, *J* = 11.4, 9.7, 3.5 Hz, 1H), 2.18 (s, 3H), 2.18 – 2.09 (m, 1H), 1.83 – 1.65 (m, 3H), 1.35 – 1.07 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 127.0, 113.8, 69.4, 69.3, 65.0, 35.9, 33.3, 25.6, 24.2, 22.8; IR (Neat Film NaCl) 3468, 2930, 2855, 2796, 1615, 1449, 1282, 1080, 1036, 901 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₀H₁₉INO [M+H]⁺: 296.0506; found: 296.0528.

¹H NMR (400 MHz, CD₂Cl₂) δ 4.28 (dd, J = 1.4, 0.7 Hz, 1H), 4.09 (dd, J = 1.7, 0.5 Hz, 1H), 3.31 (ddd, J = 11.2, 9.0, 4.2 Hz, 1H), 3.21 (d, J = 12.7 Hz, 1H), 2.75 (dt, J = 12.7, 1.6 Hz, 1H), 2.18 (s, 3H), 2.12 – 2.01 (m, 1H), 1.90 (dtd, J = 13.3, 4.7, 2.7 Hz, 1H), 1.81 – 1.66 (m, 3H), 1.43 – 1.23 (m, 3H), 1.03 (tdd, J = 13.0, 11.2, 3.7 Hz, 1H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 157.3, 91.0, 81.4, 67.2, 58.2, 41.9, 31.7, 28.5, 25.1, 24.8; IR (Neat Film NaCl) 2937, 2862, 2770, 1654, 1451, 1339, 1278, 1161, 1075, 1042, 900, 836 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₀H₁₈NO [M+H]⁺: 168.1383; found: 168.1396.

Typical procedure for linear aminoalcohols 6

To a solution of aminoalcohols **SI-7** (1.12 mmol, 1.00 equiv) in MeCN (5.60 mL) were added K_2CO_3 (11.2 mmol, 10.0 equiv) and allyl bromides (1.23 mmol, 1.10 equiv). The reaction mixture was stirred for 12 h at 23 °C. Solids were removed via a filtration through a celite plug and the resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography, using mixture of hexanes and ethyl acetate as eluent to give the product **6**.

Representative procedure for cross-coupling of linear aminoalcohols 6

Ni-Catalyzed C–O bond formation experiments were performed in a nitrogen-filled glove box. To a solution of aminoalcohol **6c** (50.0 mg, 0.145 mmol, 1.00 equiv) in MeCN (0.97 mL) in a scintillation vial were added Et₃N (22.0 μ L, 0.160 mmol, 1.10 equiv), Zn powder (19.0 mg, 0.290 mmol, 2.00 equiv), and Ni(COD)₂ (2.00 mg, 0.00724 mmol, 0.05 equiv). The reaction mixture was stirred at 23 °C for 24 h. After the reaction was done, the vial was removed from the glovebox and uncapped. Solids were removed via a filtration through a celite plug and the resulting solution was concentrated under reduced pressure. The residue was purified by flash column

¹H NMR (300 MHz, CDCl₃) δ 7.54 (m, 2H), 7.36 (m, 3H), 6.98 (s, 1H), 3.65 (t, J = 5.4 Hz, 2H), 3.36 (s, 2H), 2.95 (br, 1H), 2.66 (t, J = 5.5 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 137.2, 136.1, 128.7, 128.1, 128.0, 107.1, 70.4, 58.5, 57.8, 40.7; IR (neat film NaCl) 3442, 2946, 2840, 2792, 1490, 1445, 1083, 1066, 1046, 748, 694 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₂H₁₇INO, [M+H]⁺ : 318.0349; found: 318.0344.

¹H NMR (300 MHz, CDCl₃) δ 7.56 (m, 2H), 7.28 (m, 2H), 7.14 (m, 1H), 5.45 (s, 1H), 4.06 (m, 2H), 3.03 (s, 2H), 2.59 (m, 2H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 149.6, 135.6, 128.4, 128.1, 125.9, 107.9, 67.4, 58.3, 54.1, 46.1; IR (neat film NaCl) 2939. 2790, 1738, 1668, 1452, 1339, 1170, 1051, 695; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₂H₁₆NO, [M+H]⁺ : 190.1226; found: 190.1228.

¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.50 (m, 2H), 7.41 – 7.30 (m, 3H), 6.98 (s, 1H), 3.90 (dqd, *J* = 9.4, 6.1, 3.0 Hz, 1H), 3.75 – 3.53 (m, 1H), 3.47 (d, *J* = 13.5 Hz, 1H), 3.29 (d, *J* = 13.5 Hz, 1H), 2.45 (dd, *J* = 12.3, 3.1 Hz, 1H), 2.41 – 2.36 (m, 1H), 2.32 (s, 3H), 1.16 (d, *J* = 6.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 137.4, 136.4, 128.8, 128.3, 128.3, 128.2, 107.1, 70.8, 64.6, 63.3, 41.3, 19.9; IR (neat film NaCl) 3459, 3054, 3023, 2968, 2930, 2843, 2795, 1598, 1491, 1446, 1408, 1361, 1324, 1291, 1209, 1161, 1135, 1065, 1029, 935, 841, 750, 695 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₃H₁₉NIO, [M+H]⁺ : 332.0506; found: 332.0519.

¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.56 (m, 2H), 7.33 – 7.26 (m, 2H), 7.19 – 7.10 (m, 1H), 5.46 (d, *J* = 1.4 Hz, 1H), 4.06 (dqd, *J* = 9.9, 6.3, 2.6 Hz, 1H), 3.20 (dd, *J* = 12.5, 1.7 Hz, 1H), 2.85 – 2.72 (m, 2H), 2.31 (s, 3H), 2.06 (dd, *J* = 11.7, 9.8 Hz, 1H), 1.36 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 136.0, 128.6, 128.2, 126.0, 107.8, 73.4, 60.9, 58.0, 46.1, 19.2; IR (neat film NaCl) 2973, 2936, 2788, 1666, 1448, 1328, 1154, 1070, 975, 755, 694 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₃H₁₈NO, [M+H]⁺ : 204.1383; found: 204.1386.

¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.48 (m, 2H), 7.33 (s, 3H), 6.99 (s, 1H), 3.46 (s, 2H), 3.26 (s, br, 1H), 2.51 (s, 2H), 2.37 (s, 3H), 1.23 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 137.5, 135.8, 129.2, 128.9, 128.2, 108.3, 73.0, 70.9, 68.1, 44.0, 28.0; IR (neat film NaCl) 2969, 2786, 2360, 1446, 1356, 1121, 1031, 970, 749, 695 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₄H₂₁NIO, [M+H]⁺ : 346.0662; found: 346.0664.

¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.59 (m, 2H), 7.29 – 7.25 (m, 2H), 7.17 – 7.09 (m, 1H), 5.47 (s, 1H), 2.94 (s, 2H), 2.38 (s, 2H), 2.28 (s, 3H), 1.39 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 136.3, 128.3, 128.2, 125.8, 108.7, 76.8, 64.7, 58.3, 46.4, 26.3; IR (neat film NaCl) 2974, 2766, 1663, 1449, 1368, 1346, 1254, 1207, 1152, 1110, 968, 754, 694 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₄H₂₀NO, [M+H]⁺ : 218.1539; found: 218.1577.

¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.25 (m, 5H), 6.33 (q, *J* = 1.4 Hz, 1H), 5.92 (m, 1H), 3.63 (s, 2H), 3.56 (q, *J* = 5.4 Hz, 2H), 3.16 (s, 2H), 2.70 (t, *J* = 5.7 Hz, 1H), 2.65 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 137.8, 129.3, 128.4, 127.9, 127.4, 111.9, 64.8, 58.5, 57.5, 54.1; IR (neat film NaCl) 3435, 3024, 2808, 1616, 1493, 1452, 1257, 1151, 1027, 904, 739, 698 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₂H₁₇INO, [M+H]⁺ : 318.0349; found: 318.0356.

¹H NMR (300 MHz, CDCl₃) δ 7.33 – 7.24 (m, 5H), 4.39 (s, 1H), 4.11 (s, 1H), 3.90 (m, 2H), 3.50 (s, 2H), 2.98 (s, 2H), 2.52 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 155.9, 137.4, 129.3, 128.5, 127.4, 92.2, 67.9, 63.2, 55.3, 52.1; IR (neat film NaCl) 2875, 2807, 1653, 1453, 1313, 1278, 1125, 1079, 1067, 851, 699 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₂H₁₆NO, [M+H]⁺ : 190.1226; found: 190.1229.

Typical procedure for malonate substrates 8

To a suspension of NaH (60% dispersion in mineral oil, 4.16 mmol, 1.10 equiv) in DMF (19.0 mL) at 0 °C was added malonate **SI-8** (3.78 mmol, 1.00 equiv) in portions. The reaction mixture was stirred at 50 °C for 1 h. The solution was cooled to 0 °C and allyl bromide (3.78 mmol, 1.00 equiv) in DMF (2 mL) was added in portions over 5 min. Then, the mixture was stirred at 40 °C for 1 h. The reaction was quenched by sat. NH₄Cl and the aqueous phase was extracted with Et_2O (3 x 10.0 mL). The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (1:20 EtOAc:hexanes) on silica gel to give vinyl halide **SI-10**.

To a solution of vinyl halide **SI-10** (0.74 mmol, 1.00 equiv) in EtOH (0.50 mL) and H_2O (0.25 mL) were added solid NaHCO₃ or K_2CO_3 (0.15 mmol, 0.20 equiv) and formaldehyde (37wt.% in H_2O , 0.89 mmol, 1.20 equiv). The reaction mixture was stirred at 23 °C for 24 h. Then, water (0.40 mL) was added and the aqueous phase was extracted with EtOAc (3 x 1.00 mL). The combined organic phases were washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography, using mixture of hexanes and ethyl acetate as eluent to furnish the product **8**.

Representative procedure for cross-coupling of malonates 8

Ni-Catalyzed C–O bond formation experiments were performed in a nitrogen-filled glove box. To a solution of vinyl iodide **8a** (83.9 mg, 0.256 mmol, 1.00 equiv) in MeCN (1.71 mL) in a scintillation vial were added Et₃N (39.0 μ L, 0.282 mmol, 1.10 equiv), Zn powder (33.0 mg, 0.512 mmol, 2.00 equiv), and Ni(COD)₂ (3.50 mg, 0.013 mmol, 0.05 equiv). The reaction mixture was stirred at 23 °C for 1 h. After the reaction was done, the vial was removed from the glovebox and uncapped. Solids were removed via a filtration through a celite plug and the resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography (1:4 EtOAc:hexanes) to furnish the product **9a** (44.5 mg, 87% yield).

¹H NMR (500 MHz, C₆D₆) δ 5.79 (q, J = 1.2 Hz, 1H), 5.61 (d, J = 1.4 Hz, 1H), 4.09 (d, J = 5.8 Hz, 2H), 3.33 (s, 6H), 3.32 (d, J = 1.1 Hz, 2H); ¹³C NMR (126 MHz, C₆D₆) δ 169.9, 131.5, 101.2, 63.3, 59.3, 52.4, 45.4; IR (Neat Film NaCl) 3520, 2952, 1731, 1435, 1210, 1033 cm⁻¹; HRMS (MM: FAB+) m/z calc'd for C₉H₁₄IO₅ [M+H]⁺ : 328.9886; found: 328.9891.

¹H NMR (500 MHz, C₆D₆) δ 4.53 (q, J = 1.9 Hz, 1H), 4.44 (s, 2H), 3.91 (q, J = 1.7 Hz, 1H), 3.16 (s, 6H), 3.09 (t, J = 1.7 Hz, 2H); ¹³C NMR (126 MHz, C₆D₆) δ 169.2, 160.2, 81.8, 74.3, 59.8, 52.6, 37.0; IR (Neat Film NaCl) 2957, 2358, 2340, 1737, 1436, 1280, 1046 cm⁻¹; HRMS (MM: ESI-APCI +) m/z calc'd for C₉H₁₃O₅ [M+H]⁺ : 201.0757; found: 201.0765.

¹H NMR (500 MHz, CDCl₃) δ 5.74 (dt, J = 1.7, 0.9 Hz, 1H), 5.59 (d, J = 1.7 Hz, 1H), 4.09 (s, 2H), 3.79 (s, 6H), 3.25 (d, J = 0.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 170.4, 126.6, 122.4, 63.7, 59.0, 53.1, 42.4; IR (Neat Film NaCl) 2953, 1728, 1626, 1435, 1299, 1208, 1032, 902, 857 cm⁻¹; HRMS (MM: FAB+) *m/z* calc'd for C₉H₁₄BrO₅ [M+H]⁺: 281.0024; found: 281.0036.

¹H NMR (400 MHz, CDCl₃) δ 5.32 (d, J = 1.3 Hz, 1H), 5.30 – 5.28 (m, 1H), 4.07 (s, 2H), 3.78 (s, 6H), 3.13 (d, J = 0.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 136.6, 117.7, 63.8, 58.7, 53.0, 40.6; IR (Neat Film NaCl) 2955, 1735, 1632, 1437, 1212, 1035, 898 cm⁻¹; HRMS (MM: FAB +) m/z calc'd for C₉H₁₄O₅Cl [M+H]⁺: 237.0530; found: 237.0540.

¹H NMR (500 MHz, CDCl₃) δ 6.50 (qt, J = 7.2, 0.8 Hz, 1H), 4.04 (d, J = 6.6 Hz, 2H), 3.80 (s, 6H), 3.30 (s, br, 2H), 2.36 (t, J = 6.7 Hz, 1H), 1.70 (dt, J = 7.2, 0.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.7, 142.1, 91.5, 63.6, 59.2, 53.1, 38.7, 17.2; IR (Neat Film NaCl) 2952, 1733, 1436, 1299, 1223, 1040 cm⁻¹; HRMS (MM: FAB +) m/z calc'd for C₁₀H₁₆O₅I [M+H]⁺: 343.0043; found: 343.0048.

¹H NMR (400 MHz, C₆D₆) δ 4.97 (qt, J = 7.0, 2.2 Hz, 1H), 4.44 (s, 2H), 3.18 (s, 6H), 3.11 (dq, J = 2.8, 1.5 Hz, 2H), 1.40 (dt, J = 7.1, 1.4 Hz, 3H); ¹³C NMR (101 MHz, C₆D₆) δ 169.6, 153.8, 92.2, 73.6, 59.7, 52.6, 34.2, 12.2; IR (Neat Film NaCl) 2956, 1740, 1437, 1275, 1169, 1070, 803 cm⁻¹; HRMS (MM: FAB +) m/z calc'd for C₁₀H₁₄O₅ [M]⁺: 214.0841; found: 214.0836.

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.28 (m, 5H), 6.88 (s, 1H), 4.15 (s, 2H), 3.81 (s, 6H), 3.57 (d, J = 0.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 140.1, 138.2, 128.7, 128.3, 128.3, 96.5, 63.6, 59.9, 53.1, 46.9; IR (Neat Film NaCl) 2951, 1727, 1437, 1215, 1032, 696 cm⁻¹; HRMS (MM: ESI-APCI +) *m/z* calc'd for C₁₅H₁₈O₅I [M+H]⁺: 405.0193; found: 405.0195.

¹H NMR (400 MHz, C₆D₆) δ 7.75 – 7.70 (m, 2H), 7.25 (t, *J* = 7.8 Hz, 2H), 7.05 (ddt, *J* = 8.6, 7.2, 1.2 Hz, 1H), 5.21 – 5.18 (m, 1H), 4.54 (s, 2H), 3.20 (d, *J* = 1.6 Hz, 2H), 3.16 (s, 6H); ¹³C NMR (101 MHz, C₆D₆) δ 168.8, 153.7, 136.4, 128.2, 127.8, 125.3, 99.4, 75.2, 58.5, 52.3, 38.3; IR (Neat Film NaCl) 2953, 1738, 1678, 1435, 1279, 1210, 1028, 695 cm⁻¹; HRMS (MM: EI +) *m/z* calc'd for C₁₅H₁₆O₅ [M]⁺: 276.0998; found: 276.1012.

¹H NMR (400 MHz, CDCl₃) δ 4.02 (s, 2H), 3.78 (s, 6H), 3.37 (s, 2H), 1.88 (d, J = 0.9 Hz, 3H), 1.83 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 136.4, 114.1, 63.7, 59.3, 53.0, 38.8, 25.9, 21.2; IR (Neat Film NaCl) 2952, 1734, 1437, 1209, 1043 cm⁻¹; HRMS (MM: FAB +) m/z calc'd for C₁₁H₁₈O₅Br [M+H]⁺ : 309.0338; found: 309.0325.

¹H NMR (500 MHz, C₆D₆) δ 4.12 (d, *J* = 6.0 Hz, 2H), 3.57 (s, 2H), 3.38 (s, 6H), 1.66 (s, 3H), 1.45 (s, 3H); ¹³C NMR (126 MHz, C₆D₆) δ 170.6, 136.2, 115.0, 63.6, 59.5, 52.3, 39.0, 25.6, 20.8; IR (Neat Film NaCl) 2952, 1731, 1437, 1301, 1209, 1043 cm⁻¹; HRMS (MM: FAB +) *m/z* calc'd for C₁₁H₁₇O₅ [M+H]⁺: 229.1076; found: 229.1074.

¹H NMR (500 MHz, CDCl₃) δ 6.18 (q, *J* = 1.3 Hz, 1H), 5.91 (d, *J* = 1.5 Hz, 1H), 4.06 (d, *J* = 3.6 Hz, 2H), 3.20 (d, *J* = 1.1 Hz, 2H), 2.32 (s, 1H), 1.50 (s, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 169.1, 130.9, 101.6, 82.8, 63.9, 60.7, 45.4, 28.1; IR (Neat Film NaCl) 2978, 1728, 1369, 1256, 1148, 1020, 842 cm⁻¹; HRMS (MM: FAB +) *m/z* calc'd for C₁₅H₂₆O₅I [M+H]⁺: 413.0825; found: 413.0821.

¹H NMR (500 MHz, C₆D₆) δ 4.54 (q, J = 1.8 Hz, 1H), 4.51 (s, 2H), 3.94 (q, J = 1.6 Hz, 1H), 3.14 (t, J = 1.7 Hz, 2H), 1.27 (s, 18H); ¹³C NMR (126 MHz, C₆D₆) δ 168.3, 160.9, 81.8, 81.3, 74.5, 61.2, 37.0, 27.7; IR (Neat Film NaCl) 2979, 1732, 1370, 1146, 1050, 844 cm⁻¹; HRMS (MM: FAB +) m/z calc'd for C₁₅H₂₅O₅ [M+H]⁺: 285.1702; found: 285.1693.

¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.29 (m, 6H), 7.29 – 7.26 (m, 4H), 6.12 (q, J = 1.1 Hz, 1H), 5.87 (d, J = 1.6 Hz, 1H), 5.17 (d, J = 3.2 Hz, 4H), 4.13 (s, 2H), 3.29 (d, J = 1.1 Hz, 2H), 2.27 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 169.6, 135.1, 131.8, 128.7, 128.6, 128.4, 100.3, 67.8, 63.6, 59.5, 45.4; IR (Neat Film NaCl) 2952, 1725, 1455, 1214, 695 cm⁻¹; HRMS (MM: ESI-APCI +) m/z calc'd for C₂₁H₂₂O₅I [M+H]⁺ : 481.0506; found: 481.0509.

BnO₂C CO₂Bn

¹H NMR (600 MHz, C₆D₆) δ 7.10 – 6.90 (m, 10H), 4.83 (d, J = 8.0 Hz, 4H), 4.50 (q, J = 1.8 Hz, 1H), 4.46 (s, 2H), 3.87 (q, J = 1.7 Hz, 1H), 3.11 (t, J = 1.7 Hz, 2H); ¹³C NMR (151 MHz, C₆D₆) δ 168.7, 148.2, 135.6, 128.7, 128.5, 128.3, 81.9, 74.3, 67.7, 55.8, 37.0; IR (Neat Film NaCl) 2915, 1732, 1455, 1243, 1045, 901, 695 cm⁻¹; HRMS (MM: ESI-APCI +) m/z calc'd for C₂₁H₂₁O₅ [M+H]⁺: 353.1384; found: 353.1394.

¹H NMR (500 MHz, CDCl₃) δ 6.35 (dt, J = 2.2, 1.1 Hz, 1H), 6.05 (d, J = 2.1 Hz, 1H), 4.04 (dd, J = 11.1, 7.6 Hz, 1H), 3.98 (dd, J = 11.1, 6.5 Hz, 1H), 3.90 (s, 3H), 3.13 (dd, J = 14.9, 1.1 Hz, 1H), 3.05 (dd, J = 14.9, 1.1 Hz, 1H), 2.45 (dd, J = 7.6, 6.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 167.6, 132.6, 117.2, 97.2, 66.0, 54.2, 52.1, 46.9; IR (Neat Film NaCl) 2952, 2359, 1738, 1611, 1434, 1224, 1144, 1060, 910 cm⁻¹; HRMS (MM: FAB +) m/z calc'd for C₈H₁₁O₃NI [M+H]⁺: 295.9784; found: 295.9775.

¹H NMR (500 MHz, C₆D₆) δ 4.44 (q, J = 2.0 Hz, 1H), 3.84 (d, J = 8.9 Hz, 1H), 3.79 – 3.75 (m, 2H), 3.02 (d, J = 0.7 Hz, 3H), 2.69 (dt, J = 15.9, 1.9 Hz, 1H), 2.42 (dt, J = 15.9, 1.6 Hz, 1H); ¹³C NMR (126 MHz, C₆D₆) δ 166.1, 158.0, 117.3, 83.6, 75.1, 53.3, 46.9, 38.7; IR (Neat Film NaCl) 2959, 2249, 1747, 1682, 1435, 1231, 1046, 819 cm⁻¹; HRMS (MM: FAB +) m/z calc'd for C₈H₁₀O₃N [M+H]⁺: 168.0661; found: 168.0666.

¹H NMR (400 MHz, CDCl₃) δ 6.22 (q, *J* = 1.2 Hz, 1H), 5.97 (d, *J* = 1.6 Hz, 1H), 4.25 (d, *J* = 11.2 Hz, 1H), 3.88 (d, *J* = 11.2 Hz, 1H), 3.81 (s, 3H), 3.79 – 3.55 (m, 6H), 3.39 (s, br, 2H), 3.30 (dd, *J* = 15.5, 1.0 Hz, 1H), 3.06 (dd, *J* = 15.4, 1.1 Hz, 1H), 2.60 (s, br, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 167.7, 132.2, 99.9, 66.3, 66.1, 57.4, 53.1, 45.6, 37.2; IR (Neat Film NaCl) 2955, 2859, 1733, 1627, 1436, 1272, 1228, 1115, 1064, 999, 851 cm⁻¹; HRMS (MM: ESI-APCI +) *m/z* calc'd for C₁₂H₁₉NO₅I [M+H]⁺: 384.0302; found: 384.0315.

¹H NMR (500 MHz, C₆D₆) δ 4.60 (d, *J* = 9.0 Hz, 1H), 4.55 (q, *J* = 1.8 Hz, 1H), 4.41 (d, *J* = 9.0 Hz, 1H), 3.94 (q, *J* = 1.7 Hz, 1H), 3.22 (s, br, 2H), 3.15 – 2.97 (m, 9H), 2.71 (s, br, 2H); ¹³C NMR (101 MHz, C₆D₆) δ 171.6, 165.8, 160.7, 81.4, 75.2, 66.4, 66.0, 58.8, 52.5, 46.0, 43.5, 37.5; IR (Neat Film NaCl) 2857, 1733, 1651, 1435, 1274, 1115, 1018, 804 cm⁻¹; HRMS (MM: ESI-APCI +) *m/z* calc'd for C₁₂H₁₈NO₅ [M+H]⁺: 256.1179; found: 256.1196.

¹H NMR (500 MHz, CDCl₃) δ 6.06 (q, J = 1.4 Hz, 1H), 5.72 (d, J = 1.7 Hz, 1H), 3.96 (s, 2H), 3.79 (d, J = 0.6 Hz, 6H), 2.49 – 2.43 (m, 2H), 2.20 – 2.13 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 126.4, 109.9, 64.9, 59.0, 52.9, 40.8, 31.5; IR (Neat Film NaCl) 2952, 1729, 1617, 1436, 1205, 1043, 898 cm⁻¹; HRMS (MM: FAB+) m/z calc'd for C₁₀H₁₆IO₅ [M+H]⁺: 343.0043; found: 343.0031.

To a solution of NaH (60% dispersion in mineral oil, 78.0 mg, 1.95 mmol, 2.00 equiv) in THF (3.26 mL) was added vinyl iodide **SI-10a** (374 mg, 0.977 mmol, 1.00 equiv), and the solution was stirred until gas evolution was complete. 2-Bromoethyl acetate (0.27 mL, 2.44 mmol, 2.50 equiv) was added to the reaction mixture at 0 °C and then, the solution was stirred at 23 °C for 24 h. The reaction was quenched with sat. NH₄Cl at 0 °C and the mixture was extracted with EtOAc (3 x 3.00 mL), the combined organic phase was washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash chromatography (1:20 EtOAc:hexanes) to give dialkylated malonate and recovered **SI-10a**.

To a solution of dialkylated malonate intermediate (344 mg, 0.735 mmol, 1.00 equiv) in MeOH (2.50 mL) was added K₂CO₃ (203 mg, 1.47 mmol, 2.00 equiv) and the solution was stirred at 23 °C for 24 h. The reaction mixture was diluted with CH₂Cl₂ (3.00 mL) and the mixture was extracted with CH₂Cl₂ (3 x 2.00 mL), the combined organic phase was washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash chromatography (1:20 \rightarrow 1:8 \rightarrow 1:4 EtOAc:hexanes) to give malonate **8I** (159 mg, 38% yield, 2 steps). ¹H NMR (500 MHz, CDCl₃) δ 6.14 (q, *J* = 1.4 Hz, 1H), 5.91 (d, *J* = 1.7 Hz, 1H), 3.72 (t, *J* = 6.7 Hz, 2H), 3.17 (d, *J* = 1.2 Hz, 2H), 2.28 (t, *J* = 6.7 Hz, 2H), 1.65 (s, br, 1H), 1.47 (s 18H): ¹³C NMR (126 MHz, CDCl₃) δ 170.0 130.5 102.2 82.5 59.2 57.7

(t, J = 6.7 Hz, 2H), 3.17 (d, J = 1.2 Hz, 2H), 2.28 (t, J = 6.7 Hz, 2H), 1.65 (s, br, 1H), 1.47 (s, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 170.0, 130.5, 102.2, 82.5, 59.2, 57.7, 46.9, 34.7, 28.1; IR (Neat Film NaCl) 3447, 2977, 1726, 1368, 1250, 1145, 843 cm⁻¹; HRMS (MM: FAB +) m/z calc'd for C₁₆H₂₈IO₅ [M+H]⁺: 427.0982; found: 427.0985.

¹H NMR (500 MHz, CD₂Cl₂) δ 4.68 (h, J = 0.9 Hz, 1H), 4.02 – 3.96 (m, 2H), 2.10 – 2.04 (m, 2H), 1.76 (d, J = 1.0 Hz, 3H), 1.43 (s, 18H); ¹³C NMR (126 MHz, CD₂Cl₂) δ

170.6, 153.8, 94.6, 81.7, 64.1, 52.5, 28.7, 28.1, 20.6; IR (Neat Film NaCl) 2977, 2933, 1728, 1369, 1266, 1146, 1108, 1088, 847 cm⁻¹; HRMS (MM: FAB +) m/z calc'd for C₁₆H₂₇O₅ [M+H]⁺: 299.1858; found: 299.1835.

£-,

CO2Me MeO₂C Ч С Г

MeO2C CO2Me

Me0₂C CO₂Me

MeO₂C CO₂Me

MeO2C CO2Me

¹BuO₂C CO₂Bu ò

NC CO2Me -r

CO2^tBu BuO2C HO H

