Supporting Information for

Ni-Catalyzed Enantioselective C-Acylation of α -Substituted Lactams

Masaki Hayashi,¹ Shoshana Bachman,¹ Satoshi Hashimoto,¹ Chad C. Eichman,^{1,2} and Brian M. Stoltz¹*

¹The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States ²Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, United States

stoltz@caltech.edu

Table of Contents:

Materials and Methods	SI-2
Ligand, Solvent, Stoichiometry, and Additive Screens (Tables S1-S5)	SI-4
General Procedure for α -Substituted Lactam Substrates	SI-8
Spectroscopic Data for N-Protected Lactams	SI-9
Spectroscopic Data for α -Substituted Lactams	SI-10
General Procedure for Ni-Catalyzed C-Acylation	SI-17
Spectroscopic Data for Ni-Catalyzed C-Acylation Products	SI-18
Procedures/Spectroscopic Data for Derivatization of C-Acylation Products	SI-29
Procedures/Spectroscopic Data for Isolation/Reduction of Imine Intermediates	SI-32
Determination of Enantiomeric Excess (Table S6)	SI-34
HPLC Traces of Enantioenriched and Racemic Compounds	SI-38
Crystal Structure Data	SI-65
¹ H NMR and ¹³ C NMR Spectra	SI-75

Materials and Methods.

Unless otherwise stated, reactions were performed in flame-dried or oven-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Reaction progress was monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS. Reaction temperatures were controlled by an IKAmag temperature modulator unless otherwise indicated. Glove box manipulations were performed under a N₂ atmosphere. TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, *p*-anisaldehyde, KMnO₄ or PMA (phosphomolybdic acid) staining. Silicycle SiliaFlash P60 Academic Silica gel (particle size 0.040-0.064 mm) was used for flash column chromatography. Analytical chiral HPLC was performed with an Agilent 1100 Series HPLC utilizing a Chiralcel OD-H column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. with visualization at 254 nm. Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical chromatography system utilizing Chiralcel (OJ-H) column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. with visualization at 254 nm. ¹H and ¹³C NMR spectra were recorded on a Varian Inova 500 (500 MHz and 126 MHz, respectively) and are reported in terms of chemical shift relative to CHCl₃ (δ 7.26 and δ 77.16, respectively). Data for ¹H NMR are reported as follows: s = singlet, d = doublet, t = doublettriplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d= broad doublet, app = apparent. Data for ${}^{13}C$ are reported in terms of chemical shifts (δ ppm). IR spectra were obtained using a Perkin Elmer Paragon 1000 spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption (cm⁻¹). High resolution mass spectra (HRMS) were obtained from the Caltech Mass Spectral Facility using JEOL JMS-600H High Resolution Mass Spectrometer in fast atom bombardment (FAB+) or electron ionization (EI+) mode, or Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+). Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm pathlength cell and are reported as: $\left[\alpha\right]_{D}^{T}$ (concentration in g/100 mL, solvent). Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number.

THF, Et₂O, CH₂Cl₂, toluene, CH₃CN, TBME and dioxane were dried by passage through an activated alumina column under argon. Purified water was obtained using a Barnstead NANOpure Infinity UV/UF system. Brine solutions are saturated aqueous solutions of sodium chloride. Commercially available reagents were purchased from Sigma-Aldrich, Acros Organics, TCI, Oakwood chemicals, Strem, or Alfa Aesar and used as received unless otherwise stated. LiBr was purchased from Aldrich and dried for 3 h at 140 °C in vacuo.

(3-Bromopropoxy)methyl)benzene,¹ 1-bromo-2-butene,² (*E*)-1-(3-chloroprop-1-en-1-yl)-4-methylbenzene,³ (*E*)-1-(3-chloroprop-1-en-1-yl)-4-methoxybenzene,⁴ (*E*)-1-(3-chloroprop-1-en-1-yl)-4-fluoro-benzene,⁵ (*E*)-3-(thiophen-3-yl)prop-2-en-1-ol,⁶ and ((1*E*,3*E*)-5-bromopenta-1,3-dien-1-yl)benzene⁷ were prepared by known methods and used without purification. (*E*)-3-(3-Chloroprop-1-en-1-yl)thiophene was prepared from (*E*)-3-(thiophen-3-yl)prop-2-en-1-ol and SOCl₂ in CH₂Cl₂ and used without purification.

List of Abbreviations:

ee – enantiomeric excess, dr – diastereomeric ratio, HPLC – high-performance liquid, chromatography, SFC – supercritical fluid chromatography, TLC – thin-layer chromatography, EtOAc – ethyl acetate, THF – tetrahydrofuran, MeOH – methanol, MeCN – acetonitrile, IPA – isopropanol, BINAP – (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl), LHMDS – lithium hexamethyldisilazide, NaHMDS – sodium hexamethyldisilazide, KHMDS – potasium hexamethyldisilazide, PMP – *p*-methoxyphenyl, CAN – ceric ammonium nitrate, TFA – trifluoroacetic acid, *m*-CPBA – *m*-chloroperoxybenzoic acid

¹ Hasserodt, J.; Janda, K. D.; Lerner, R. A. J. Am. Chem. Soc. **1997**, 119, 5993–5998.

² Wang, K.-B.; Ran, R.-Q.; Xiu, S.-D.; Li, C.-Y. Org. Lett. 2013, 15, 2374–2377.

³ Lölsberg, W.; Ye, S.; Schmalz, H. -G. Adv. Synth. Catal. 2010, 352, 2023–2031.

⁴ Meiß, R.; Kumar, K.; Waldmann, H. Chem. Eur. J. 2015, 21, 13526-13530.

⁵ Tian, Y.; Wang, Y.; Shang, H.; Xu, X.; Tang Y. Org. Biomol. Chem. 2015, 13, 612–619

⁶ Kurauchi, D.; Hirano, K.; Kato, H.; Saito, T.; Miyamoto K.; Uchiyama, M. *Tetrahedron* **2015**, *71*, 5849–5857.

⁷ Kim, D. D.; Lee, S. J.; Beak, P. J. Org. Chem. 2005, 70, 5376–5386.

Ligand and Solvent Screen (Table S1 and S2)

Ligand screen (Table S1)^a

Р	MP~N + PhC	CN + PhCl	liga Ni(CC LHM	nd (12 mol %) DD) ₂ (10 mol % DS (1.1 equiv uene. rt. 20 h	()) → PM		
	1a 2a	a 3a	th	nen 1 M HCI		\/ 4a	
entry	ligand	conversion (%)	ee (%)	entry	ligand	conversion (%)	ee (%)
1	(R)-BINAP	31	7	36	SL-J001-1	80	16
2	(R)-T-BINAP	61	3	37	SL-J002-1	53	13
3	(R)-DM-BINAP	87	7	38	SL-J003-1	41	5
4	(<i>R</i>)-H8-BINAP	73	-2	39	SL-J004-1	54	8
5	(R)-SEGPHOS	1	-31	40	SL-J005-1	7	-8
6	(R)-DM-SEGPHOS	59	-1	41	SL-J006-1	79	30
7	(R)-DTBM-SEGPHOS	26	-32	42	SL-J007-1	85	6
8	(R)-DIFLUORPHOS	2	8	43	SL-J008-1	18	-1
9	(S)-Xyl-MeOBIPHEP	66	2	44	SL-J009-1	5	1
10	(R)-BTFM-Garphos	22	-10	45	SL-J013-1	32	10
11	(R)-SYNPHOS	45	-1	46	SL-J015-1	5	2
12	(R)-SOLPHOS	33	-3	47	SL-J212-1	86	12
13	(S)-C ₃ -TunePhos	53	6	48	SL-J216-1	4	-5
14	(<i>R</i>)-P-Phos	19	-5	49	SL-J404-1	37	1
15	(<i>R</i>)-Phanephos	15	-2	50	SL-J418-1	44	-12
16	(<i>R</i>)-SDP	16	3	51	SL-J502-1	4	-4
17	(R)-Monophos	74	1	52	SL-J505-1	0	-
18	(S)-BINAPINE	8	11	53	SL-W001-1	52	20
19	CatASiumMN Xyl(R)	4	13	54	SL-W002-1	64	10
20	CatASiumMN Xyl ^F (<i>R</i>)	6	2	55	SL-W003-1	9	-16
21	(<i>R,R</i>)-Chiraphos	0	-	56	SL-W005-1	54	14
22	(<i>R,R</i>)-DIOP	0	-	57	SL-W006-1	61	18
23	(2S,5S)-MeBPE	0	-	58	SL-W008-1	19	16
24	(2 <i>R</i> ,5 <i>R</i>)-MeDUPHOS	0	-	59	SL-W009-1	64	7
25	(<i>R</i>)-MOP	0	-	60	SL-W022-1	7	-14
26	(R)-QUINAP	0	-	61	SL-M001-2	39	35
27	(<i>R,R</i>)-DACH	0	-	62	SL-M002-2	0	-
28	(S)-tBuPHOX	2	10	63	SL-M003-2	25	15
29	(S)-tBu-Me ₂ -box	0	-	64	SL-M004-2	70	59
30	(S)-iPr-pybox	0	-	65	SL-M009-2	71	62
31	(S,S)-tangphos	3	7	66	SL-M012-2	0	-
32	(2S,5S)-Me-Ferocelane	76	-24	67	SL-T001-1	7	34
33	(2S,5S)-Et-Ferocelane	25	-6	68	SL-T002-1	0	-
34	(2S,5S)-iPr-Ferocelane	1	35	69	SL-F356-2	0	-
35	(2S,5S)-Me-f-Ketalphos	63	-56				

^a Reaction conditions: lactam (1 equiv), Ni(COD)₂ (10 mol %), ligand (12 mol %), LHMDS (1.1 equiv), PhCN (2 equiv), PhCI (2 equiv), toluene (0.2 M), rt, 20 h, then 1 M HCl aq.

The structures of ligands used in table S1 are showed in figure S1

Structures of ligands (Figure S1)

SL-J008-1 (R,R' = XyI'r, XyI) SL SL-J009-1 (R,R' = Cy, fBu) SL-J013-1 (R,R' = MeOMe₂Ph, fBu) SL-J015-1 (R,R' = 2-furyI, XyI) SL-J212-1 (R,R' = 2-furyI, fBu) SL-J216-1 (R,R' = 1-Np, fBu) SL-J404-1 (R,R' = 1-Np, XyI) SL-J404-1 (R,R' = 1-Np, XyI) SL-J418-1 (R,R' = MeOMe₂Ph, XyI)

SL-J502-1 (R,R' = *t*Bu, Ph) SL-J505-1 (R,R' = *t*Bu, 2-tol) General Procedure for Ligand and Solvent Screen: In a nitrogen-filled glovebox, to a solution of Ni(COD)₂ (1.10 mg, 4.00 μ mol, 0.100 equiv) and ligand (4.80 μ mol, 0.120 equiv) in solvent (0.1 mL) was added a solution of lactam **1a** (8.21 mg, 40.0 μ mol, 1.00 equiv), benzonitrile **2a** (8.24 μ L, 80.0 μ mol, 2.00 equiv), chlorobenzene **3a** (8.13 μ L, 80.0 μ mol, 2.00 equiv) and LHMDS (7.36 mg, 44.0 μ mol, 1.10 equiv) in solvent (0.1 mL) and the reaction mixture was stirred at 25 °C for 20 h. 1M HCl aqueous solution (0.5 mL) was added and the mixture was stirred at ambient temperature for 0.5 h. EtOAc (0.5 mL) was added and the mixture was stirred for 1 min. The organic layer (10 μ L) was sampled and diluted to a mixture of hexanes and IPA (8/2, 1 mL). This solution was analyzed for conversion and enantiomeric excess (see Methods for the Determination of Enantiomeric Excess).

PMP.	O L + PhCN	l + PhCl	ligand (12 Ni(COD) ₂ (1 LHMDS (1.	mol %) 0 mo l%) 1 equiv)	o L	o L
	1a 2a	- 3a	solvent, i then 1 M	rt, 20 h M HCI	РМР_ _N ́ 4а	- Ph
			solvent, con	version / ee		
ligand	toluene	THF	dioxane	ТВМЕ	DME	toluene/THF(5/1)
SL-J006-1	79% / 30% ee	26% / 2% ee	52% / 30% ee	74% / 60% ee	37% / 6% ee	54% / 41% ee
SL-M004-2	70% / 59% ee	32% / 15% ee	52% / 47% ee	72% / 51% ee	53% / 25% ee	53% / 52% ee
SL-M009-2	71% / 62% ee	29% / 13% ee	42% / 47% ee	42% / 31% ee	47% / 21% ee	45% / 53% ee
	solvent,	conversion / ee				
ligand	methylcyclohexan	e nBu₂O	DMF			
SL-J006-1	96% / 25% ee	0% / -	0% / -			
SL-M009-2	48% / 13% ee	0% / -	0% / -			

Solvent screen (Table S2)^a

^a Reaction conditions: lactam (1 equiv), Ni(COD)₂ (10 mol%), ligand (12 mol%), LHMDS (1.1 equiv), PhCN (2 equiv), PhCI (2 equiv), solvent (0.2 M), rt, 20 h.

		SL-M004-1 (12 mol%) Ni(COD) ₂ (10 mol%) LHMDS (1.2 equiv) LiBr (5.0 equiv)	
+ Plich	T FIIDI	toluene/THF (10:1) 23 °C, 24 h then 1 M HCI	PMP-N
2a	3b		4a
equiv 1a	convers	ion (%) yield (%)	ee (%)
equiv <i>1a</i> 2.0	convers	ion (%) yield (%) 9 85	ee (%) 88
equiv <i>1a</i> 2.0 1.8	convers >9 94	ion (%) yield (%) 9 85 4 93	ee (%) 88 86
equiv <i>1a</i> 2.0 1.8 1.6	convers >9 94 94	ion (%) yield (%) 9 85 1 93 1 93	ee (%) 88 86 nd
equiv <i>1a</i> 2.0 1.8 1.6 1.4	convers >9 94 95	ion (%) yield (%) 9 85 4 93 1 93 5 92	ee (%) 88 86 nd 86
	+ PhCN 2a	+ PhCN + PhBr 2a 3b	+ PhCN + PhBr 2a 3b

Effect of lactam stoichiometry (Table S3)^a

^aReaction conditions: PhCN (1.0 equiv), PhBr (1.5 equiv), SL-M004-1 (12 mol %), Ni(COD)₂ (10 mol%), LHMDS (1.2 equiv), toluene/THF (10:1, 0.09 M), rt, 24 h.

Effect of bromide additives (Table S4)^a

^aReaction conditions: lactam (2.0 equiv), PhCN (1.0 equiv), PhBr (1.5 equiv), SL-M004-1 (12 mol %), Ni(COD)₂ (10 mol%), LHMDS (1.2 equiv), toluene/THF (10:1, 0.09 M), rt, 24 h.

Effect of lithium additives (Table S5)^a

^aReaction conditions: lactam (1.0 equiv), PhCN (2.0 equiv), ArBr (2.0 equiv), SL-M004-1 (12 mol %), Ni(COD)₂ (10 mol%), LHMDS (1.1 equiv), toluene/THF (5:1, 0.2 M), rt, 20 h.

General Procedure for α -Substituted Lactam Substrates

General procedure 1: 1-(2-methoxyphenyl)pyrrolidin-2-one (SI2)

To a suspension of lactam **SI1** (8.17 g, 96.0 mmol, 1.20 equiv), K₂CO₃ (22.1 g, 160 mmol, 2.00 equiv) and CuI (1.52 g, 8.00 mmol, 0.10 equiv) in toluene (80 mL) were added 2-bromoanisole (9.84 mL, 80.0 mmol, 1.00 equiv) and *N*,*N*'-dimethylethylendiamine (1.68 mL, 16.0 mmol, 0.20 equiv). The reaction mixture was stirred at 100 °C for 18 h then allowed to cool to ambient temperature and filtered through a pad of silica gel eluting with EtOAc (250 mL). The eluate was concentrated under reduced pressure and the residue was purified by flash column chromatography (1:1 EtOAc:hexanes) on silica gel to give lactam **SI2** as a pale yellow oil (9.88 g, 65% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.23 (m, 2H), 7.01 – 6.93 (m, 2H), 3.84 (s, 3H), 3.76 (t, *J* = 7.0 Hz, 2H), 2.56 (t, *J* = 8.1 Hz, 2H), 2.23 – 2.14 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 175.2, 154.8, 128.7, 128.6, 127.2, 120.9, 112.0, 55.6, 49.9, 31.2, 19.0; IR (Neat Film NaCl) 2968, 2889, 2838, 1694, 1504, 1461, 1408, 1304, 1281, 1253, 1023, 755 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₁H₁₄NO₂ [M+H]⁺: 192.1019, found 192.1019.

General procedure 2: 1-(2-methoxyphenyl)-3-methylpyrrolidin-2-one (1b)

To a solution of diisopropylamine (3.07 mL, 22.0 mmol, 1.10 equiv) in THF (17 mL) was added a solution of *n*-BuLi (8.80 mL, 22.0 mmol, 2.5 M in hexanes, 1.10 equiv) dropwise at -78 °C. After 20 min at -78 °C, a solution of lactam **SI2** (3.82 g, 20.0

mmol, 1.00 equiv) in THF (50 mL) was added dropwise. After an additional 20 min, a solution of methyl iodide (15.0 mL, 30.0 mmol, 2.0 M in TBME, 1.50 equiv) was added and the reaction mixture was stirred at -78 °C for 3 h. Saturated NH₄Cl aqueous solution (50 mL) was added and the mixture was allowed to ambient temperature. The mixture was extracted with EtOAc (100 mL), washed with brine (30 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (1:4 to 1:2 EtOAc:hexanes) on silica gel to give lactam **1b** as a yellow oil (2.86 g, 70% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 6.99 – 6.93 (m, 2H), 3.83 (s, 3H), 3.74 – 3.62 (m, 2H), 2.65 (tq, *J* = 8.7, 7.1 Hz, 1H), 2.37 (dddd, *J* = 12.2, 8.5, 7.3, 3.5 Hz, 1H), 1.82 (dq, *J* = 12.4, 8.5 Hz, 1H), 1.31 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 177.7, 155.0, 128.8, 128.6, 127.7, 121.0, 112.1, 55.8, 48.1, 37.0, 28.2, 16.4; IR (Neat Film NaCl) 2965, 2932, 2874, 1695, 1504, 1463, 1456, 1403, 1311, 1296, 1277, 1251, 1024, 754 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₂H₁₆NO₂ [M+H]⁺: 206.1176, found 206.1176.

Spectroscopic Data for N-Protected Lactams

1-(4-Methoxyphenyl)pyrrolidin-2-one (SI3)

Lactam **SI3** was prepared according to the general procedure 1, using 4-iodoanisole and K₃PO₄ in place of 2-bromoanisole and K₂CO₃ respectively, and isolated by recrystallization in hexanes/EtOAc (4/1) as a white crystal. 89% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.53 (m, 2H), 6.99 – 6.95 (m, 2H), 3.90 (t, *J* = 7.0 Hz, 2H), 3.87 (s, 3H), 2.66 (t, *J* = 8.1 Hz, 2H), 2.27 – 2.19 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 173.9, 156.5, 132.6, 121.8, 114.0, 55.5, 49.2, 32.5, 18.1; IR (Neat Film NaCl) 2952, 2907, 1683, 1517, 1255, 1226, 1182, 1126, 1032, 829 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₁H₁₄NO₂ [M+H]⁺: 192.1019, found 192.1021.

1-(3,5-Dimethoxyphenyl)pyrrolidin-2-one (SI4)

Lactam **SI4** was prepared according to the general procedure 1, using 1-bromo-3,5dimethoxybenzene in place of 2-bromoanisole, and isolated by recrystallization in hexanes/EtOAc (5/1) as a white crystal. 89% yield. ¹H NMR (500 MHz, CDCl₃) δ 6.90 (d, J = 2.2 Hz, 2H), 6.31 (t, J = 2.2 Hz, 1H), 3.87 (t, J = 7.0 Hz, 2H), 3.84 (s, 6H), 2.65 (t, J = 8.1 Hz, 2H), 2.19 (p, J = 7.5 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 174.5, 160.9, 141.3, 98.5, 96.6, 55.5, 49.2, 33.2, 18.0; IR (Neat Film NaCl) 2959, 1694, 1593, 1474, 1455, 1424, 1397, 1276, 1245, 1198, 1152, 1071, 1056, 922, 840, 825, 683 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₂H₁₆NO₃ [M+H]⁺: 222.1125, found 222.1129.

1-(2-Isopropoxyphenyl)-pyrrolidin-2-one (SI5)

Lactam **SI5** was prepared according to the general procedure 1, using 1-bromo-2isopropoxybenzene in place of 2-bromoanisole, and isolated by flash column chromatography (1:2 to 1:1 EtOAc:hexanes) on silica gel as a pale yellow oil. 57% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.23 (m, 2H), 7.03 – 6.96 (m, 2H), 4.58 (hept, *J* = 6.0 Hz, 1H), 3.82 (t, *J* = 6.7 Hz, 2H), 2.59 (t, *J* = 7.6 Hz, 2H), 2.28 – 2.16 (m, 2H), 1.38 (d, *J* = 6.0 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 175.2, 153.1, 128.9, 128.4, 128.4, 120.8, 114.7, 70.8, 49.9, 31.4, 22.2, 19.2; IR (Neat Film NaCl) 2976, 2933, 1697, 1595, 1500, 1456, 1405, 1385, 1304, 1282, 1251, 1125, 1111, 957, 753 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₃H₁₈NO₂ [M+H]⁺: 220.1332, found 220.1328.

Spectroscopic Data for α -Substituted Lactams

1-(4-Methoxyphenyl)-3-methylpyrrolidin-2-one (1a)

Lactam **1a** was prepared according to the general procedure 2 from **SI3** in place of **SI2**, and isolated by flash column chromatography (1:3 EtOAc:hexanes) on silica gel as a white solid. 82% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.54 – 7.51 (m, 2H), 6.92 – 6.88 (m, 2H), 3.80 (s, 3H), 3.79 – 3.70 (m, 2H), 2.66 (ddq, *J* = 9.4, 8.6, 7.1 Hz, 1H), 2.37 (dddd, *J* = 12.1, 8.5, 7.0, 3.2 Hz, 1H); 1.77 (dq, *J* = 12.5, 8.7 Hz, 1H), 1.31 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.3, 156.4, 133.0, 121.4, 114.0, 55.5, 46.9, 38.1, 27.1, 16.3; IR (Neat Film NaCl) 2952, 2882, 2835, 1682, 1516, 1251, 1225, 1122, 1099, 1030, 829 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₂H₁₆NO₂ [M+H]⁺: 206.1176, found 206.1177.

1-(3,5-Dimethoxyphenyl)-3-methylpyrrolidin-2-one (1c)

Lactam 1c was prepared according to the general procedure 2 from SI4 in place of SI2, and isolated by flash column chromatography (1:4 EtOAc:hexanes) on silica gel

as a white solid. 87% yield. ¹H NMR (500 MHz, CDCl₃) δ 6.96 (d, J = 2.2 Hz, 2H), 6.31 (t, J = 2.2 Hz, 1H), 3.84 (s, 6H), 3.79 (dd, J = 8.8, 5.0 Hz, 2H), 2.78 – 2.66 (m, 1H), 2.45 – 2.35 (m, 1H), 1.86 – 1.74 (m, 1H), 1.35 (d, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.9, 160.8, 141.5, 97.9, 96.5, 55.4, 46.8, 38.6, 26.9, 16.1; IR (Neat Film NaCl) 2964, 1698, 1597, 1474, 1392, 1273, 1246, 1208, 1154, 1071, 927, 834, 682 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₃H₁₈NO₃ [M+H]⁺: 236.1281, found 236.1284.

1-(2-Isopropoxyphenyl)-3-methylpyrrolidin-2-one (1d)

Lactam **1d** was prepared according to the general procedure 2 from **SI5** in place of **SI2**, and isolated by flash column chromatography (1:3 to 1:2 EtOAc:hexanes) on silica gel as a pale yellow oil. 83% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.22 (m, 2H), 7.03 – 6.96 (m, 2H), 4.57 (hept, J = 6.1 Hz, 1H), 3.80 – 3.67 (m, 2H), 2.67 (tq, J = 8.4, 7.1 Hz, 1H), 2.46 – 2.35 (m, 1H), 1.84 (dq, J = 12.3, 8.2 Hz, 1H), 1.37 (d, J = 6.1 Hz, 6H), 1.35 (d, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 177.5, 153.2, 129.0, 128.7, 128.3, 120.8, 114.8, 70.8, 47.9, 36.9, 28.2, 22.2, 16.4; IR (Neat Film NaCl) 2974, 2930, 1701, 1595, 1499, 1457, 1405, 1277, 1249, 1124, 1111, 955, 750 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₄H₂₀NO₂ [M+H]⁺: 234.1489, found 234.1482.

1-(2-Methoxyphenyl)-3-ethylpyrrolidin-2-one (SI6)

Lactam **SI6** was prepared according to the general procedure 2 using ethyl iodide in place of methyl iodide, and isolated by flash column chromatography (1:3 EtOAc:hexanes) on silica gel as a pale yellow oil. 81% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.19 (m, 2H), 7.01 – 6.92 (m, 2H), 3.82 (s, 3H), 3.76 – 3.69 (m, 1H), 3.69 – 3.60 (m, 1H), 2.53 (qd, J = 8.7, 4.3 Hz, 1H), 2.38 – 2.27 (m, 1H), 2.04 – 1.92 (m, 1H), 1.92 – 1.81 (m, 1H), 1.63 – 1.49 (m, 1H), 1.04 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.9, 154.8, 128.7, 128.5, 127.5, 120.8, 112.0, 55.6, 48.2, 43.4, 25.1, 24.2, 11.5; IR (Neat Film NaCl) 2961, 1695, 1596, 1505, 1462, 1404, 1280, 1249, 1024, 752 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₃H₁₈NO₂ [M+H]⁺: 220.1332, found 220.1334.

3-Benzyl-1-(2-methoxyphenyl)pyrrolidin-2-one (SI7)

cedure 2 using benzyl brom

SI-12

Lactam **SI7** was prepared according to the general procedure 2 using benzyl bromide in place of methyl iodide, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a pale yellow oil. 80% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.08 (m, 7H), 6.99 – 6.90 (m, 2H), 3.80 (s, 3H), 3.63 (dt, *J* = 9.5, 7.7 Hz, 1H), 3.49 (ddd, *J* = 9.5, 8.6, 3.7 Hz, 1H), 3.30 (dd, *J* = 13.7, 4.0 Hz, 1H), 2.93 – 2.83 (m, 1H), 2.77 (dd, *J* = 13.6, 9.7 Hz, 1H), 2.20 – 2.10 (m, 1H), 1.94 – 1.83 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 176.1, 154.9, 139.8, 129.3, 128.7, 128.65, 128.6, 127.5, 126.4, 121.0, 112.2, 55.7, 48.1, 43.9, 37.1, 25.2; IR (Neat Film NaCl) 2942, 1694, 1596, 1504, 1454, 1407, 1279, 1252, 1025, 753, 701 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₈H₂₀NO₂ [M+H]⁺: 282.1489, found 282.1491.

3-(4-Methoxybenzyl)-1-(2-methoxyphenyl)pyrrolidin-2-one (SI8)

Lactam **SI8** was prepared according to the general procedure 2 using 4methoxybenzyl chloride in place of methyl iodide, and isolated by flash column chromatography (1:3 EtOAc:hexanes) on silica gel as a pale yellow oil. 59% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.24 (m, 1H), 7.24 – 7.14 (m, 3H), 7.00 – 6.90 (m, 2H), 6.88 – 6.80 (m, 2H), 3.79 (s, 3H), 3.78 (s, 3H), 3.62 (dt, *J* = 9.5, 7.6 Hz, 1H), 3.47 (ddd, *J* = 9.5, 8.6, 3.8 Hz, 1H), 3.21 (dd, *J* = 13.7, 4.0 Hz, 1H), 2.90 – 2.80 (m, 1H), 2.74 (dd, *J* = 13.8, 9.4 Hz, 1H), 2.20 – 2.09 (m, 1H), 1.93 – 1.81 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 176.1, 158.1, 154.8, 131.6, 130.1, 128.6, 128.5, 127.4, 120.8, 113.8, 112.1, 55.6, 55.3, 48.1, 43.9, 36.0, 25.0; IR (Neat Film NaCl) 2936, 1696, 1596, 1512, 11506, 1462, 1406, 1300, 1279, 1249, 1179, 1028, 753 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₉H₂₂NO₃ [M+H]⁺: 312.1594, found 312.1589.

3-(4-Fluorobenzyl)-1-(2-methoxyphenyl)pyrrolidin-2-one (SI9)

Lactam **SI9** was prepared according to the general procedure 2 using 4-fluorobenzyl bromide in place of methyl iodide, and isolated by flash column chromatography (1:3 to 1:2 EtOAc:hexanes) on silica gel as a pale yellow oil. 77% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.18 (m, 4H), 7.04 – 6.92 (m, 4H), 3.81 (s, 3H), 3.65 (dt, *J* = 9.6, 7.7 Hz, 1H), 3.50 (ddd, *J* = 9.5, 8.6, 3.6 Hz, 1H), 3.24 (dd, *J* = 13.5, 3.8 Hz, 1H), 2.93 – 2.76 (m, 2H), 2.22 – 2.12 (m, 1H), 1.94 – 1.82 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 175.8, 161.7 (d, *J* = 243.9 Hz), 154.9, 135.3 (d, *J* = 3.0 Hz), 130.7 (d, *J* = 8.0 Hz), 128.8, 128.6, 127.4, 121.0, 115.3 (d, *J* = 20.9 Hz), 112.2, 55.7, 48.1, 43.8, 36.2, 25.0; IR (Neat Film NaCl) 2942, 1696, 1597, 1507, 1459, 1406, 1252, 1221, 1158, 1025, 752 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₈H₁₉FNO₂ [M+H]⁺: 300.1394, found 300.1390.

1-(2-Methoxyphenyl)-3-(2,2,2-trifluoroethyl)pyrrolidin-2-one (SI10)

Lactam **SI10** was prepared according to the general procedure 2 using 2-trifluoroethyl iodide in place of methyl iodide, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a yellow oil. 36% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.29 (ddd, J = 8.2, 7.5, 1.7 Hz, 1H), 7.23 (dd, J = 7.7, 1.7 Hz, 1H), 7.03 – 6.93 (m, 2H), 3.83 (s, 3H), 3.80 – 3.72 (m, 1H), 3.65 (ddd, J = 9.7, 8.8, 1.6 Hz, 1H), 3.04 – 2.93 (m, 1H), 2.93 – 2.84 (m, 1H), 2.56 – 2.46 (m, 1H), 2.14 (s, 1H), 2.07 – 1.95 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 173.9, 154.8, 129.1, 128.6, 127.2 (q, J = 276.6 Hz), 127.0, 121.0, 112.1, 55.8, 48.2, 37.1 (q, J = 2.5 Hz), 35.7 (q, J = 29.0 Hz), 27.0; IR (Neat Film NaCl) 2946, 1703, 1597, 1505, 1462, 1414, 1282, 1252, 1135, 1039, 753, 615 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₃H₁₅F₃NO₂ [M+H]⁺: 274.1049, found 274.1049.

3-(3-(Benzyloxy)propyl)-1-(2-methoxyphenyl)pyrrolidin-2-one (SI11)

Lactam **SI11** was prepared according to the general procedure 2 using ((3-bromopropoxy)methyl)benzene¹ in place of methyl iodide, and isolated by flash column chromatography (1:3 to 1:2 EtOAc:hexanes) on silica gel as a pale yellow oil. 76% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.32 (m, 4H), 7.28 – 7.24 (m, 1H), 7.23 – 7.19 (m, 1H), 6.98 – 6.90 (m, 2H), 4.50 (s, 2H), 3.80 (s, 3H), 3.72 – 3.59 (m, 3H), 3.57 – 3.48 (m, 2H), 2.58 (qd, *J* = 8.8, 4.6 Hz, 1H), 2.37 – 2.26 (m, 1H), 2.06 – 1.94 (m, 1H), 1.90 – 1.81 (m, 1H), 1.80 – 1.71 (m, 2H), 1.64 – 1.52 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 176.7, 154.8, 138.6, 128.6, 128.5, 128.4, 127.7, 127.5, 127.4, 120.8, 112.0, 73.0, 70.4, 55.6, 48.2, 41.8, 28.0, 27.5, 25.8; IR (Neat Film NaCl) 2939, 2860, 1697, 1596, 1504, 1454, 1405, 1279, 1252, 1102, 1026, 749, 699 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₁H₂₆NO₃ [M+H]⁺: 340.1907, found 340.1915.

1-(2-Methoxyphenyl)-3-(3-methylbut-2-en-1-yl)pyrrolidin-2-one (SI12)

Lactam **SI12** was prepared according to the general procedure 2 using 1-bromo-3methyl-2-butene in place of methyl iodide, and isolated by flash column chromatography (1:3 EtOAc:hexanes) on silica gel as a pale yellow oil. 75% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.20 (m, 2H), 7.01 – 6.92 (m, 2H), 5.24 – 5.16 (m, 1H), 3.83 (s, 3H), 3.73 – 3.59 (m, 2H), 2.69 – 2.53 (m, 2H), 2.33 – 2.22 (m, 2H), 1.91 – 1.80 (m, 1H), 1.74 (s, 3H), 1.67 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.7, 155.0, 133.8, 128.8, 128.6, 127.7, 121.4, 121.0, 112.2, 55.8, 48.3, 42.4, 29.6, 26.0, 25.2, 18.1; IR (Neat Film NaCl) 2913, 1698, 1596, 1505, 1459, 1405, 1279, 1252, 1025, 751 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₆H₂₂NO₂ [M+H]⁺: 260.1645, found 260.1644.

(E)-3-(But-2-en-1-yl)-1-(2-methoxyphenyl)pyrrolidin-2-one (SI13)

Lactam **SI13** was prepared according to the general procedure 2 using 1-bromo-2butene² in place of methyl iodide, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a pale yellow oil. 24% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.21 (m, 2H), 7.01 – 6.92 (m, 2H), 5.62 – 5.43 (m, 2H), 3.83 (s, 3H), 3.73 – 3.58 (m, 2H), 2.68 – 2.53 (m, 2H), 2.32 – 2.19 (m, 2H), 1.95 – 1.82 (m, 1H), 1.72 – 1.66 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.5, 154.8, 128.6, 128.6, 128.1, 127.4, 120.9, 112.1, 55.6, 48.2, 42.0, 34.3, 24.8, 18.1; IR (Neat Film NaCl) 2937, 1699, 1596, 1505, 1456, 1436, 1404, 1298, 1279, 1252, 1107, 1046, 1025, 968, 751 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₅H₂₀NO₂ [M+H]⁺: 246.1489, found 246.1487.

(E)-3-Cinnamyl-1-(2-methoxyphenyl)pyrrolidin-2-one (SI14)

Lactam **SI14** was prepared according to the general procedure 2 using cinnamyl bromide in place of methyl iodide, and isolated by flash column chromatography (1:5 to 1:2 EtOAc:hexanes) on silica gel as a pale yellow oil. 80% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.36 – 7.17 (m, 5H), 7.02 – 6.93 (m, 2H), 6.51 (d, *J* = 15.7 Hz, 1H), 6.29 (dt, *J* = 15.7, 7.1 Hz, 1H), 3.81 (s, 3H), 3.75 – 3.61 (m, 2H), 2.84 – 2.73 (m, 2H), 2.57 – 2.46 (m, 1H), 2.38 – 2.27 (m, 1H), 2.03 – 1.92 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 176.0, 154.8, 137.5, 132.2, 128.6, 128.6, 128.5, 127.5, 127.4, 127.1, 126.1, 120.9, 112.0, 55.6, 48.2, 41.9, 34.7, 24.8; IR (Neat Film NaCl) 2941, 1694, 1596, 1504, 1463, 1407, 1253, 1025, 967, 749, 694 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₀H₂₂NO₂ [M+H]⁺: 308.1645, found 308.1645.

(E)-1-(2-Methoxyphenyl)-3-(3-(p-tolyl)allyl)pyrrolidin-2-one (SI15)

Lactam **SI15** was prepared according to the general procedure 2 using (*E*)-1-(3-chloroprop-1-en-1-yl)-4-methylbenzene³ in place of methyl iodide, and isolated by flash column chromatography (1:3 EtOAc:hexanes) on silica gel as a pale yellow oil. 90% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.21 (m, 4H), 7.13 (d, *J* = 7.9 Hz, 2H), 7.03 – 6.94 (m, 2H), 6.49 (d, *J* = 15.7 Hz, 1H), 6.24 (dt, *J* = 15.8, 7.1 Hz, 1H), 3.83 (s, 3H), 3.77 – 3.62 (m, 2H), 2.84 – 2.73 (m, 2H), 2.58 – 2.44 (m, 1H), 2.40 – 2.27 (m, 4H), 2.04 – 1.92 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 176.1, 154.8, 136.9, 134.7, 132.0, 129.2, 128.6, 128.6, 127.4, 126.4, 126.0, 120.9, 112.0, 55.6, 48.2, 41.9, 34.7, 24.8, 21.2; IR (Neat Film NaCl) 2939, 1695, 1596, 1504, 1462, 1405, 1279, 1252, 1181, 1122, 1107, 1045, 1025, 968, 891, 752 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₁H₂₄NO₂ [M+H]⁺: 322.1802, found 322.1803.

(E)-1-(2-Methoxyphenyl)-3-(3-(4-methoxyphenyl)allyl)pyrrolidin-2-one (SI16)

Lactam **SI16** was prepared according to the general procedure 2 using (*E*)-1-(3-chloroprop-1-en-1-yl)-4-methoxybenzene⁴ in place of methyl iodide, and isolated by flash column chromatography (1:3 EtOAc:hexanes) on silica gel as a pale yellow oil. 100% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.18 (m, 4H), 7.02 – 6.94 (m, 2H), 6.94 – 6.82 (m, 2H), 6.45 (dt, *J* = 15.8, 1.4 Hz, 1H), 6.14 (dt, *J* = 15.7, 7.1 Hz, 1H), 3.81 (s, 3H), 3.81 (s, 3H), 3.76 – 3.60 (m, 2H), 2.81 – 2.69 (m, 2H), 2.54 – 2.43 (m, 1H), 2.37 – 2.26 (m, 1H), 2.02 – 1.91 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 176.1, 158.9, 154.8, 131.5, 130.3, 128.6, 128.6, 127.4, 127.2, 125.2, 120.9, 113.9, 112.0, 55.6, 55.3, 48.2, 42.0, 34.7, 24.8; IR (Neat Film NaCl) 2934, 1694, 1606, 1510,1505, 1463, 1406, 1249, 1175, 1027, 753 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₁H₂₄NO₃ [M+H]⁺: 338.1751, found 338.1748.

(E)-3-(3-(4-Fluorophenyl)allyl)-1-(2-methoxyphenyl)pyrrolidin-2-one (SI17)

Lactam **SI17** was prepared according to the general procedure 2 using (*E*)-1-(3-chloroprop-1-en-1-yl)-4-fluorobenzene⁵ in place of methyl iodide, and isolated by flash column chromatography (1:3 EtOAc:hexanes) on silica gel as a white solid. 52% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.30 (m, 2H), 7.30 – 7.21 (m, 2H), 7.05 – 6.93 (m, 4H), 6.51 – 6.43 (m, 1H), 6.20 (dt, *J* = 15.8, 7.1 Hz, 1H), 3.81 (s, 3H), 3.75 – 3.61 (m, 2H), 2.83 – 2.73 (m, 2H), 2.56 – 2.45 (m, 1H), 2.38 – 2.27 (m, 1H), 1.96 (ddt, *J* = 12.8, 8.6, 7.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 176.2, 162.2 (d, *J* = 246.1 Hz), 154.9, 133.8 (d, *J* = 3.4 Hz), 131.1, 128.8, 128.7, 127.7 (d, *J* = 7.8 Hz), 127.4, 127.3 (d, *J* = 2.1 Hz), 121.0, 115.5 (d, *J* = 21.6 Hz), 112.2, 55.7, 48.3, 42.0, 34.8, 25.0; IR (Neat Film NaCl) 2942, 1696, 1597, 1507, 1458, 1405, 1279, 1253,

1225, 1158, 1046, 1025, 968, 839, 753 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₂₀H₂₁FNO₂ [M+H]⁺: 326.1551, found 326.1544.

(E)-1-(2-Methoxyphenyl)-3-(3-(thiophen-3-yl)allyl)pyrrolidin-2-one (SI18)

Lactam **SI18** was prepared according to the general procedure 2 using (*E*)-3-(3-chloroprop-1-en-1-yl)thiophene in place of methyl iodide, and isolated by flash column chromatography (1:2 EtOAc:hexanes) on silica gel as a pale yellow oil. 62% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.19 (m, 4H), 7.10 (dd, *J* = 3.1, 1.2 Hz, 1H), 7.01 – 6.92 (m, 2H), 6.52 (d, *J* = 15.7 Hz, 1H), 6.13 (dt, *J* = 15.7, 7.1 Hz, 1H), 3.81 (s, 3H), 3.75 – 3.59 (m, 2H), 2.81 – 2.71 (m, 2H), 2.53 – 2.42 (m, 1H), 2.37 – 2.26 (m, 1H), 2.02 – 1.90 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 176.1, 154.8, 140.1, 128.6, 128.6, 127.3, 127.3, 126.4, 125.9, 125.0, 121.0, 120.9, 112.1, 55.6, 48.2, 41.9, 34.6, 24.9; IR (Neat Film NaCl) 2936, 1694, 1596, 1504, 1463, 1408, 1279, 1252, 1181, 1122, 1046, 1025, 966, 890, 862, 753 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₈H₂₀NO₂S [M+H]⁺: 314.1209, found 314.1206.

1-(2-Methoxyphenyl)-3-((2*E*,4*E*)-5-phenylpenta-2,4-dien-1-yl)pyrrolidin-2-one (SI19)

Lactam **SI19** was prepared according to the general procedure 2 using ((1*E*,3*E*)-5bromopenta-1,3-dien-1-yl)benzene⁷ in place of methyl iodide, and isolated by flash column chromatography (1:2 EtOAc:hexanes) on silica gel as a colorless oil. 73% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.38 (m, 2H), 7.33 – 7.27 (m, 3H), 7.26 – 7.19 (m, 2H), 7.00 – 6.93 (m, 2H), 6.79 (ddd, *J* = 15.7, 10.4, 0.8 Hz, 1H), 6.49 (d, *J* = 15.7 Hz, 1H), 6.33 (ddd, *J* = 15.1, 10.4, 0.8 Hz, 1H), 5.93 – 5.83 (m, 1H), 3.83 (s, 3H), 3.76 – 3.61 (m, 2H), 2.82 – 2.68 (m, 2H), 2.49 – 2.37 (m, 1H), 2.36 – 2.26 (m, 1H), 1.99 – 1.87 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 176.0, 154.8, 137.4, 132.8, 132.0, 130.9, 129.0, 128.6, 128.6, 128.6, 127.4, 127.3, 126.2, 120.9, 112.0, 55.6, 48.1, 41.9, 34.6, 25.0; IR (Neat Film NaCl) 2941, 1694, 1596, 1505, 1463, 1407, 1300, 1279, 1252, 1181, 1123, 1107, 1046, 1026, 992, 911, 891, 750, 693 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₂H₂₄NO₂ [M+H]⁺: 334.1802, found 334.1801.

General Procedure for Ni-Catalyzed C-Acylation

Please note that the absolute configuration was determined only for compound **10** by transforming to a known compound. The absolute configuration for all other products has been inferred by analogy. For respective HPLC and SFC conditions, please refer to Table S3.

General procedure 3: (*S*)-1-(2-methoxyphenyl)-3-methyl-3-(4-methylbenzoyl) pyrrolidin-2-one (6)

In a nitrogen-filled glovebox, to an oven-dried 4 mL vial equipped with a stir bar was added LHMDS (40.2 mg, 0.240 mmol, 1.20 equiv), LiBr (86.9 mg, 1.00 mmol, 5.00 equiv), a solution of lactam 1b (82.1 mg, 0.400 mmol, 2.00 equiv) in toluene (1.0 mL) and THF (0.2 mL), bromobenzene (3b, 31.5 µL, 0.300 mmol, 1.50 equiv), and ptolunitrile 2a (23.4 mg, 0.200 mmol, 1.00 equiv). To a separate oven-dried 4 mL vial equipped with a stir bar was added Ni(COD)₂ (5.50 mg, 0.0200 mmol, 0.100 equiv), SL-M004-1 (Solvias, 25.3 mg, 0.0240 mmol, 0.120 equiv), and toluene (1.0 mL). Both the lactam suspension and the Ni/ligand solution were stirred at ambient temperature for several minutes and then cooled to 4 °C. The Ni/ligand solution was added to the lactam suspension at 4 °C, and the vial was closed with a PTFE-lined septum cap. Note: Although this effect has not yet been studied in detail, we have observed lower yields when the vial containing the lactam suspension was first closed with a PTFE-lined septum cap, and then the catalyst solution was added through the septum cap. The reaction mixture was stirred at 4 °C for 48 h and then removed from the glovebox. EtOAc (6 mL) and 1 M HCl aqueous solution (5 mL) were added and the mixture was stirred at ambient temperature for 1 h. The reaction mixture was extracted with EtOAc (24 mL), washed with brine (5 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (1:5 EtOAc:hexanes) on silica gel to give lactam 6 as a white solid (59.4 mg, 92% yield, 91% ee). $[\alpha]_D^{25}$ +2.1° (c 1.03, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 8.02 (m, 2H), 7.33 – 7.20 (m, 4H), 7.03 – 6.95 (m, 2H), 3.94 – 3.87 (m, 1H), 3.85 (s, 3H), 3.84 - 3.78 (m, 1H), 2.94 (ddd, J = 12.9, 8.4, 6.4 Hz, 1H), 2.40(s, 3H), 2.07 (ddd, J = 12.8, 8.0, 4.8 Hz, 1H), 1.68 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.4, 174.9, 155.0, 143.2, 133.0, 129.6, 128.98, 128.97, 128.4, 126.9, 120.9, 112.1, 56.6, 55.7, 47.1, 32.5, 21.62, 21.61; IR (Neat Film NaCl) 2973, 2929, 1701, 1696, 1606, 1503, 1459, 1408, 1272, 1255, 1185, 1121, 1023, 1009, 970, 753 cm^{-1} ; HRMS (MM: ESI-APCI+) m/z calc'd for $C_{20}H_{22}NO_3$ [M+H]⁺: 324.1594, found 324.1599.

Spectroscopic Data for Ni-Catalyzed C-Acylation Products

Lactam **4a** was prepared according to the general procedure 3 from **1a** using benzonitrile in place of *p*-tolunitrile, reacting at ambient temperature for 24 h in place of 0 °C for 48 h, and isolated by flash column chromatography (1:10 EtOAc:hexanes) on silica gel as a white solid. 79.9 mg, 86% yield, 88% ee.

Gram-scale reaction

In a nitrogen-filled glovebox, to a solution of LHMDS (1.00 g, 6.00 mmol, 1.20 equiv) in toluene (10 mL) at 23 °C, was slowly added a solution of 1a (1.33 g, 6.50 mmol, 1.30 equiv) in toluene (13 mL). The flask containing the solution of **1a** was then rinsed with toluene (2 mL), and the rinse was added to the LHMDS/1a solution. LiBr (2.17 g, 25.0 mmol, 5.00 equiv) was dissolved in THF (5 mL) and then added to the reaction mixture, followed by benzonitrile (515 µL, 5.00 mmol, 1.00 equiv) and bromobenzene (785 µL, 7.50 mmol, 1.50 equiv). Then, a solution of Ni(COD)₂ (138 mg, 0.500 mmol, 0.100 equiv) and SL-M004-1 (632 mg, 0.600 mmol, 1.20 equiv) in toluene (23 mL) was added slowly, followed by a 2 mL toluene rinse. The reaction mixture was stirred at 23 °C for 45 h. The reaction mixture was then removed from the glovebox, EtOAc (150 mL) and 1 M HCl aqueous solution (125 mL) were added, and the mixture was stirred at ambient temperature for 1 h. The reaction mixture was extracted with EtOAc (200 mL), washed with brine (100 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (1:3 EtOAc:hexanes) on silica gel to give lactam 4a as an off-white solid. 1.06 g, 69% yield, 90% ee. $[\alpha]_D^{25}$ -27.1° (c 1.45, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.07 – 8.00 (m, 2H), 7.58 – 7.47 (m, 3H), 7.46 – 7.38 (m, 2H), 6.96 – 6.87 (m, 2H), 3.95 (ddd, J = 9.5, 7.9, 6.1 Hz, 1H), 3.86 (ddd, J = 9.6, 8.2, 5.1 Hz, 1H), 3.82(s, 3H), 2.93 (ddd, J = 13.0, 8.0, 5.1 Hz, 1H), 2.08 (ddd, J = 12.9, 8.3, 6.1 Hz, 1H), 1.68 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.0, 173.3, 157.0, 136.0, 132.58, 132.56, 129.3, 128.5, 121.9, 114.3, 58.4, 55.6, 46.7, 31.8, 22.1; IR (Neat Film NaCl) 1685, 1512, 1399, 1268, 1249, 1182, 1090, 1032, 970, 830, 702 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₉H₂₀NO₃ [M+H]⁺: 310.1438, found 310.1442.

(S)-3-Benzoyl-1-(2-methoxyphenyl)-3-methylpyrrolidin-2-one (4b)

Lactam **4b** was prepared according to the general procedure 3 from **1b** using benzonitrile in place of *p*-tolunitrile, and isolated by flash column chromatography

(1:5 EtOAc:hexanes) on silica gel as a white solid. 50.3 mg, 81% yield, 92% ee. $[\alpha]_D^{25}$ +4.0° (c 1.21, CHCl₃, 92% ee); ¹H NMR (500 MHz, CDCl₃) δ 8.17 – 8.11 (m, 2H), 7.56 – 7.48 (m, 1H), 7.47 – 7.40 (m, 2H), 7.34 – 7.25 (m, 2H), 7.04 – 6.95 (m, 2H), 3.90 (ddd, J = 9.6, 8.4, 4.8 Hz, 1H), 3.86 – 3.78 (m, 1H), 3.85 (s, 3H), 2.95 (ddd, J = 12.9, 8.4, 6.3 Hz, 1H), 2.08 (ddd, J = 12.8, 8.0, 4.8 Hz, 1H), 1.69 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.9, 174.7, 155.0, 135.8, 132.4, 129.4, 129.0, 128.3, 128.3, 126.8, 121.0, 112.1, 56.8, 55.7, 47.1, 32.4, 21.6; IR (Neat Film NaCl) 2974, 2930, 1701, 1697, 1596, 1503, 1459, 1410, 1305, 1270, 1256, 1121, 1023, 1010, 970, 750, 702 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₉H₂₀NO₃ [M+H]⁺: 310.1438, found 310.1441.

(S)-3-Benzoyl-1-(3,5-dimethoxyphenyl)-3-methylpyrrolidin-2-one (4c)

Lactam **4c** was prepared according to the general procedure 3 from **1c** using benzonitrile in place of *p*-tolunitrile, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a white solid. 54.5 mg, 80% yield, 85% ee. $[\alpha]_D^{25}$ –30.0° (c 1.04, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.04 – 7.97 (m, 2H), 7.55 – 7.48 (m, 1H), 7.47 – 7.38 (m, 2H), 6.92 (d, *J* = 2.2 Hz, 2H), 6.31 (t, *J* = 2.2 Hz, 1H), 3.97 (ddd, *J* = 9.6, 8.0, 6.0 Hz, 1H), 3.87 (ddd, *J* = 9.6, 8.3, 5.1 Hz, 1H), 3.81 (s, 6H), 2.92 (ddd, *J* = 13.1, 8.0, 5.2 Hz, 1H), 2.07 (ddd, *J* = 12.9, 8.3, 6.0 Hz, 1H), 1.68 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.6, 173.8, 160.9, 141.0, 135.7, 132.6, 129.2, 128.4, 98.3, 97.1, 58.7, 55.5, 46.4, 31.4, 22.0; IR (Neat Film NaCl) 2937, 2840, 1696, 1598, 1480, 1393, 1277, 1249, 1206, 1156, 1067, 972, 834, 722, 699, 682, 661 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₀H₂₂NO₄ [M+H]⁺: 340.1543, found 340.1552.

(S)-3-Benzoyl-1-(2-isopropoxyphenyl)-3-methylpyrrolidin-2-one (4d)

Lactam **4d** was prepared according to the general procedure 3 from **1d** using benzonitrile in place of *p*-tolunitrile, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a white solid. 46.7 mg, 69% yield, 86% ee. $[\alpha]_D^{25}$ +9.4° (c 1.01, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.21 – 8.14 (m, 2H), 7.59 – 7.51 (m, 1H), 7.51 – 7.43 (m, 2H), 7.35 – 7.26 (m, 2H), 7.06 – 6.97 (m, 2H), 4.63 (hept, *J* = 6.1 Hz, 1H), 3.98 (ddd, *J* = 9.5, 8.2, 4.9 Hz, 1H), 3.85 (ddd, *J* = 9.6, 8.0, 6.3 Hz, 1H), 3.00 (ddd, *J* = 12.8, 8.2, 6.3 Hz, 1H), 2.10 (ddd, *J* = 12.8, 8.0, 4.9 Hz, 1H), 1.73 (s, 3H), 1.36 (d, *J* = 6.0 Hz, 3H), 1.35 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.0, 174.5, 153.2, 135.9, 132.4, 129.4, 128.8, 128.8, 128.3, 127.7, 120.6, 114.1, 70.4, 56.9, 47.2, 32.6, 22.1, 22.1, 21.6; IR (Neat Film NaCl) 2977, 2930, 1697,

1596, 1500, 1455, 1407, 1281, 1270, 1255, 1124, 954, 750, 701 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₂₁H₂₄NO₃ [M+H]⁺: 338.1751, found 338.1744.

(S)-1-(2-Methoxyphenyl)-3-methyl-3-(3-methylbenzoyl)pyrrolidin-2-one (7)

Lactam 7 was prepared according to the general procedure 3 from **1b** using *m*-tolunitrile in place of *p*-tolunitrile, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a colorless oil. 59.1 mg, 91% yield, 93% ee. $[\alpha]_D^{25}$ +5.5° (c 0.52, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.97 – 7.90 (m, 1H), 7.89 – 7.88 (m, 1H), 7.33 – 7.26 (m, 4H), 7.04 – 6.95 (m, 2H), 3.90 (ddd, *J* = 9.6, 8.4, 4.7 Hz, 1H), 3.86 – 3.78 (m, 1H), 3.84 (s, 3H), 2.93 (ddd, *J* = 12.9, 8.4, 6.5 Hz, 1H), 2.40 (s, 3H), 2.11 – 2.02 (m, 1H), 1.67 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.3, 174.8, 155.06, 138.0, 135.8, 133.1, 129.8, 129.0, 128.3, 128.1, 126.9, 126.5, 121.0, 112.1, 56.8, 55.7, 47.1, 32.4, 21.6, 21.5; IR (Neat Film NaCl) 2973, 2931, 1694, 1598, 1504, 1455, 1409, 1276, 1255, 1182, 1121, 1092, 1044, 1024, 976, 905, 789, 754, cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₀H₂₂NO₃ [M+H]⁺: 324.1594, found 324.1602.

(S)-1-(2-Methoxyphenyl)-3-methyl-3-(2-methylbenzoyl)pyrrolidin-2-one (8)

Lactam **8** was prepared according to the general procedure 3 from **1b** using *o*-tolunitrile in place of *p*-tolunitrile, reacting with aqueous HCl at 70 °C in place of ambient temperature, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a colorless oil. 44.9 mg, 69% yield, 94% ee. $[\alpha]_D^{25}$ -29.6° (c 0.20, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.64 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.34 – 7.25 (m, 2H), 7.25 – 7.16 (m, 3H), 7.01 – 6.93 (m, 2H), 3.82 (s, 3H), 3.73 (dd, *J* = 7.6, 6.3 Hz, 2H), 2.82 – 2.73 (m, 1H), 2.33 (s, 3H), 2.14 – 2.05 (m, 1H), 1.59 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 205.5, 173.8, 154.9, 139.1, 135.6, 130.9, 129.7, 128.9, 128.4, 126.9, 126.0, 125.2, 120.9, 112.1, 58.4, 55.6, 47.2, 31.9, 21.3, 20.1; IR (Neat Film NaCl) 2971, 2932, 1694, 1597, 1505, 1456, 1409, 1305, 1281, 1256, 1122, 1045, 1025, 969, 755 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₀H₂₂NO₃ [M+H]⁺: 324.1594, found 324.1601.

(S)-3-(4-(tert-Butyl)benzoyl)-1-(2-methoxyphenyl)-3-methylpyrrolidin-2-one (9)

Lactam **9** was prepared according to the general procedure 3 from **1b** using 4-(*tert*butyl)benzonitrile in place of *p*-tolunitrile, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a white solid. 64.7 mg, 89% yield, 92% ee. $[\alpha]_D^{25}$ +6.9° (c 1.04, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.13 – 8.07 (m, 2H), 7.47 – 7.41 (m, 2H), 7.33 – 7.25 (m, 2H), 7.04 – 6.95 (m, 2H), 3.93 – 3.80 (m, 2H), 3.85 (s, 3H), 2.96 (ddd, *J* = 12.9, 8.4, 6.5 Hz, 1H), 2.08 (ddd, *J* = 12.8, 7.9, 4.8 Hz, 1H), 1.69 (s, 3H), 1.34 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 198.2, 175.0, 156.0, 155.0, 132.7, 129.5, 128.9, 128.4, 126.9, 125.2, 120.9, 112.1, 56.6, 55.7, 47.1, 35.0, 32.5, 31.1, 21.6; IR (Neat Film NaCl) 2963, 1701, 1676, 1603, 1504, 1459, 1406, 1272, 1255, 1121, 1109, 1023, 971, 752 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₃H₂₈NO₃ [M+H]⁺: 366.2064, found 366.2072.

(S)-3-(4-Methoxybenzoyl)-1-(2-methoxyphenyl)-3-methylpyrrolidin-2-one (10)

Lactam **10** was prepared according to the general procedure 3 from **1b** using 4methoxybenzonitrile in place of *p*-tolunitrile, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a colorless oil. 57.8 mg, 85% yield, 89% ee. $[\alpha]_D^{25}$ -3.7° (c 0.73, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.24 – 8.17 (m, 2H), 7.32 – 7.27 (m, 2H), 7.03 – 6.88 (m, 4H), 3.93 – 3.87 (m, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.83 – 3.77 (m, 1H), 2.97 (ddd, *J* = 12.8, 8.2, 6.2 Hz, 1H), 2.07 (ddd, *J* = 12.9, 8.0, 5.0 Hz, 1H), 1.68 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.8, 175.0, 162.9, 155.0, 132.1, 128.9, 128.3, 128.2, 127.0, 120.9, 113.4, 112.1, 56.6, 55.7, 55.4, 47.2, 32.7, 21.8; IR (Neat Film NaCl) 2971, 2933, 1695, 1600, 1504, 1464, 1456, 1410, 1307, 1259, 1174, 1027, 971, 845, 754, 699, 610 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₀H₂₂NO₄ [M+H]⁺: 340.1543, found 340.1547.

(S)-3-(4-Fluorobenzoyl)-1-(2-methoxyphenyl)-3-methylpyrrolidin-2-one (11)

Lactam **11** was prepared according to the general procedure 3 from **1b** using 4-fluorobenzonitrile in place of *p*-tolunitrile, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a white solid. 23.3 mg, 36% yield, 93% ee. $[\alpha]_D^{25}$ –1.8° (c 0.77, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.28 – 8.20 (m, 2H), 7.34 – 7.27 (m, 1H), 7.27 – 7.20 (m, 1H), 7.14 – 7.06 (m, 2H), 7.04 – 6.95 (m, 2H), 3.91 (ddd, *J* = 9.6, 8.3, 5.0 Hz, 1H), 3.83 (s, 3H), 3.80 (ddd, *J* = 9.6, 8.1, 6.2 Hz, 1H), 2.95 (ddd, *J* = 12.8, 8.3, 6.1 Hz, 1H), 2.12 – 2.03 (m, 1H), 1.68 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 197.1, 174.5, 165.2 (d, *J* = 254.2 Hz), 154.9, 132.4 (d, *J* = 9.1 Hz), 131.9, 129.1, 128.3, 126.7, 121.0, 115.3 (d, *J* = 21.6 Hz), 112.1, 56.9, 55.7, 47.2, 32.5, 21.7; IR (Neat Film NaCl) 2974, 1697, 1684, 1597, 1506, 1457,

1410, 1271, 1256, 1235, 1160, 1024, 972, 848, 754, 609 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₉H₁₉FNO₃ [M+H]⁺: 328.1343, found 328.1353.

(S)-1-(2-Methoxyphenyl)-3-methyl-3-(4-(trifluoromethyl)benzoyl)pyrrolidin-2one (12)

Lactam **12** was prepared according to the general procedure 3 from **1b** using 4trifluoromethylbenzonitrile in place of *p*-tolunitrile, reacting at ambient temperature for 24 h in place of 0 °C for 48 h, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a colorless oil. 21.5 mg, 23% yield, 87% ee. $[\alpha]_D^{25}$ +2.7° (c 0.71, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.29 – 8.22 (m, 2H), 7.78 – 7.61 (m, 2H), 7.35 – 7.29 (m, 1H), 7.24 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.05 – 6.95 (m, 2H), 3.91 (ddd, *J* = 9.7, 8.3, 5.0 Hz, 1H), 3.84 (s, 3H), 3.83 – 3.77 (m, 1H), 2.93 (ddd, *J* = 12.9, 8.3, 6.2 Hz, 1H), 2.09 (ddd, *J* = 13.0, 8.0, 5.0 Hz, 1H), 1.69 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.4, 174.1, 154.9, 139.0, 133.6 (q, *J* = 32.7 Hz), 129.7, 129.2, 128.3, 126.6, 125.3 (q, *J* = 3.8 Hz), 123.6 (q, *J* = 272.5 Hz), 121.0, 112.1, 57.2, 55.7, 47.2, 32.1, 21.5; IR (Neat Film NaCl) 2975, 2934, 1697, 1505, 1409, 1328, 1316, 1257, 1169, 1127, 1068, 1020, 1009, 973, 858, 753; cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₀H₁₉F₃NO₃ [M+H]⁺: 378.1312, found 378.1325.

Lactam **13** was prepared according to the general procedure 3 from **1b** using 2-naphthonitrile in place of *p*-tolunitrile, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a colorless oil. 47.5 mg, 66% yield, 91% ee. $[\alpha]_D^{25}$ +15.8° (c 0.52, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.77 (d, *J* = 1.3 Hz, 1H), 8.14 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.98 – 7.92 (m, 1H), 7.87 (t, *J* = 8.4 Hz, 2H), 7.62 – 7.56 (m, 1H), 7.56 – 7.49 (m, 1H), 7.35 – 7.27 (m, 2H), 7.06 – 6.97 (m, 2H), 3.96 (ddd, *J* = 9.6, 8.3, 4.9 Hz, 1H), 3.90 – 3.81 (m, 1H), 3.84 (s, 3H), 3.04 (ddd, *J* = 12.9, 8.3, 6.2 Hz, 1H), 2.17 – 2.08 (m, 1H), 1.75 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.9, 174.7, 155.0, 135.1, 133.0, 132.4, 131.1, 129.8, 129.0, 128.3, 128.3, 128.0, 127.6, 127.0, 126.5, 125.4, 121.0, 112.2, 57.1, 55.7, 47.2, 32.6, 21.8; IR (Neat Film NaCl) 2930, 1694, 1505, 1463, 1409, 1281, 1255, 1120, 1024, 750 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₃H₂₂NO₃ [M+H]⁺: 360.1594, found 360.1589.

(S)-3-Ethyl-1-(2-methoxyphenyl)-3-(4-methylbenzoyl)pyrrolidin-2-one (14)

Lactam 14 was prepared according to the general procedure 3 from SI6, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a colorless oil. 33.9 mg, 50% yield, 78% ee. $[\alpha]_D^{25}$ +14.6° (c 0.81, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 8.3 Hz, 2H), 7.31 – 7.18 (m, 4H), 7.01 – 6.92 (m, 2H), 3.90 (ddd, J = 9.5, 8.1, 6.7 Hz, 1H), 3.79 (s, 3H), 3.71 (ddd, J = 9.5, 8.7, 4.3 Hz, 1H), 2.95 (ddd, J = 13.0, 8.0, 4.2 Hz, 1H), 2.41 – 2.30 (m, 4H), 2.17 – 2.05 (m, 2H), 0.97 (t, J =7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.3, 173.5, 154.9, 143.0, 134.0, 129.5, 128.9, 128.9, 128.4, 127.1, 120.9, 112.1, 61.8, 55.6, 47.5, 29.5, 29.1, 21.6, 8.8; IR (Neat Film NaCl) 2962, 1700, 1606, 1504, 1461, 1253, 1159, 1024, 752 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₁H₂₄NO₃ [M+H]⁺: 338.1751, found 338.1753.

(S)-3-Benzyl-1-(2-methoxyphenyl)-3-(4-methylbenzoyl)pyrrolidin-2-one (15)

Lactam **15** was prepared according to the general procedure 3 from **SI7**, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a colorless oil. 48.8 mg, 61% yield, 81% ee. $[\alpha]_D^{25}$ +62.3° (c 0.90, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.13 – 8.06 (m, 2H), 7.31 – 7.16 (m, 8H), 6.93 – 6.83 (m, 3H), 3.77 (s, 3H), 3.62 (td, *J* = 9.1, 4.1 Hz, 1H), 3.53 (d, *J* = 13.7 Hz, 1H), 3.34 (d, *J* = 13.7 Hz, 1H), 2.90 – 2.72 (m, 2H), 2.37 (s, 3H), 2.26 (ddd, *J* = 13.0, 8.4, 4.1 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 197.7, 173.1, 154.9, 143.2, 136.7, 133.3, 130.6, 129.7, 129.0, 128.9, 128.4, 127.9, 126.9, 126.7, 120.8, 112.0, 61.4, 55.6, 47.0, 40.9, 28.7, 21.7; IR (Neat Film NaCl) 2928, 1696, 1604, 1502, 1457, 1405, 1240, 1185, 1025, 741, 702 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₆H₂₆NO₃ [M+H]⁺: 400.1907, found 400.1919.

(S)-3-(4-Methoxybenzyl)-1-(2-methoxyphenyl)-3-(4-methylbenzoyl)pyrrolidin-2one (16)

Lactam **16** was prepared according to the general procedure 3 from **SI8**, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a colorless oil. 65.8 mg, 77% yield, 81% ee. $[\alpha]_D^{25}$ +50.4° (c 1.21, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.16 – 8.09 (m, 2H), 7.30 – 7.18 (m, 5H), 6.99 (dd, *J* = 8.0, 1.8 Hz, 1H), 6.98 – 6.88 (m, 2H), 6.88 – 6.80 (m, 2H), 3.81 (s, 3H), 3.80 (s, 3H), 3.67 (td, J = 9.2, 4.2 Hz, 1H), 3.51 (d, J = 13.9 Hz, 1H), 3.32 (d, J = 13.9 Hz, 1H), 2.95 (ddd, J = 9.4, 8.6, 6.5 Hz, 1H), 2.80 (ddd, J = 13.3, 9.0, 6.4 Hz, 1H), 2.40 (s, 3H), 2.27 (ddd, J = 13.0, 8.6, 4.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 197.9, 173.2, 158.7, 154.9, 143.1, 133.4, 131.5, 129.7, 129.0, 128.8, 128.6, 127.9, 126.7, 120.8, 113.7, 112.0, 61.5, 55.6, 55.3, 47.0, 40.1, 28.7, 21.6; IR (Neat Film NaCl) 2930, 1694, 1606, 1505, 1463, 1409, 1301, 1248, 1180, 1028, 832, 753 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₇H₂₈NO₄ [M+H]⁺: 430.2013, found 430.2006.

(S)-3-(4-Fluorobenzyl)-1-(2-methoxyphenyl)-3-(4-methylbenzoyl)pyrrolidin-2one (17)

Lactam 17 was prepared according to the general procedure 3 from SI9, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a white foam. 63.5 mg, 76% yield, 74% ee. $[\alpha]_D^{25}$ +38.9° (c 3.08, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.15 – 8.08 (m, 2H), 7.31 – 7.21 (m, 5H), 7.04 – 6.91 (m, 5H), 3.79 (s, 3H), 3.67 (td, *J* = 9.3, 4.4 Hz, 1H), 3.54 (d, *J* = 13.9 Hz, 1H), 3.34 (d, *J* = 13.9 Hz, 1H), 3.00 (ddd, *J* = 9.5, 8.7, 6.3 Hz, 1H), 2.81 (ddd, *J* = 13.4, 9.1, 6.3 Hz, 1H), 2.41 (s, 3H), 2.26 (ddd, *J* = 13.3, 8.7, 4.4 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 197.6, 172.9, 162.1 (d, *J* = 245.2 Hz), 154.8, 143.3, 133.2, 132.4 (d, *J* = 3.4 Hz), 132.0 (d, *J* = 7.7 Hz), 129.6, 129.1, 128.9, 127.8, 126.5, 120.9, 115.2 (d, *J* = 21.1 Hz), 112.0, 61.4, 55.6, 47.0, 40.1, 28.6, 21.7; IR (Neat Film NaCl) 2931, 1697, 1604, 1504, 1465, 1410, 1222, 1185, 1026, 909, 833, 752, 731 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₆H₂₅FNO₃ [M+H]⁺: 418.1813, found 418.1806.

(*R*)-1-(2-Methoxyphenyl)-3-(4-methylbenzoyl)-3-(2,2,2-trifluoroethyl)pyrrolidin-2-one (18)

Lactam **18** was prepared according to the general procedure 3 from **SI10**, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a colorless oil. 45.5 mg, 58% yield, 71% ee. $[\alpha]_D^{25}$ +10.3° (c 2.16, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.16 – 8.09 (m, 2H), 7.34 – 7.28 (m, 1H), 7.28 – 7.17 (m, 3H), 7.03 – 6.92 (m, 2H), 4.00 (ddd, J = 9.6, 7.7, 6.8 Hz, 1H), 3.78 (s, 3H), 3.72 (ddd, J = 9.6, 8.7, 3.9 Hz, 1H), 3.34 (dq, J = 15.8, 11.1 Hz, 1H), 3.10 – 3.01 (m, 1H), 2.87 (dq, J = 15.7, 11.1 Hz, 1H), 2.40 (s, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 195.2, 171.5, 154.9, 143.6, 133.2, 129.7, 129.4, 129.3, 128.2, 126.6, 126.5 (q, J = 277.8 Hz), 121.1, 112.1, 57.8, 55.7, 47.7, 39.1 (q, J = 28.3 Hz), 29.2, 21.8; IR (Neat Film NaCl) 2952, 1703, 1673, 1505, 1464, 1373, 1299, 1260, 1143, 1021, 753 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₂₁H₂₁F₃NO₃ [M+H]⁺: 392.1468, found 392.1459.

(*S*)-3-(3-(Benzyloxy)propyl)-1-(2-methoxyphenyl)-3-(4-methylbenzoyl)pyrrolidin -2-one (19)

Lactam **19** was prepared according to the general procedure 3 from **SI11**, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a colorless oil. 61.6 mg, 67% yield, 60% ee. $[\alpha]_D^{25}$ +9.3° (c 2.90, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.16 – 8.10 (m, 2H), 7.35 – 7.27 (m, 6H), 7.25 – 7.19 (m, 3H), 7.01 – 6.92 (m, 2H), 4.45 (d, *J* = 2.3 Hz, 2H), 3.88 (ddd, *J* = 9.5, 8.0, 6.6 Hz, 1H), 3.77 (s, 3H), 3.76 – 3.66 (m, 1H), 3.46 (td, *J* = 6.4, 1.1 Hz, 2H), 2.95 (ddd, *J* = 12.6, 8.0, 4.3 Hz, 1H), 2.44 – 2.36 (m, 4H), 2.19 – 2.07 (m, 2H), 1.77 – 1.58 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 198.0, 173.4, 154.9, 143.0, 138.5, 133.8, 129.5, 128.9, 128.9, 128.4, 128.3, 127.6, 127.5, 127.0, 120.9, 112.0, 72.8, 70.3, 61.1, 55.6, 47.5, 32.8, 30.0, 24.8, 21.6; IR (Neat Film NaCl) 2935, 1698, 1606, 1504, 1455, 1408, 1302, 1279, 1252, 1185, 1101, 1027, 750, 699 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₉H₃₂NO₄ [M+H]⁺: 458.2326, found 458.2315.

(S)-1-(2-Methoxyphenyl)-3-(4-methylbenzoyl)-3-(3-methylbut-2-en-1-yl) pyrrolidin-2-one (20)

Lactam **20** was prepared according to the general procedure 3 from **SI12**, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a pale yellow oil. 53.2 mg, 71% yield, 76% ee. $[\alpha]_D^{25}$ +29.6° (c 2.15, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.14 – 8.07 (m, 2H), 7.32 – 7.25 (m, 2H), 7.25 – 7.18 (m, 2H), 7.02 – 6.92 (m, 2H), 5.23 – 5.15 (m, 1H), 3.88 (ddd, *J* = 9.5, 8.5, 5.7 Hz, 1H), 3.83 (s, 3H), 3.68 (ddd, *J* = 9.4, 8.7, 5.1 Hz, 1H), 3.02 – 2.93 (m, 1H), 2.89 – 2.73 (m, 2H), 2.39 (s, 3H), 2.14 (ddd, *J* = 13.0, 8.7, 5.7 Hz, 1H), 1.72 (s, 3H), 1.59 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.2, 173.5, 155.0, 142.9, 135.5, 133.8, 129.5, 128.9, 128.9, 128.3, 127.1, 120.9, 118.6, 112.1, 61.1, 55.6, 47.5, 34.5, 29.2, 26.1, 21.6, 18.0; IR (Neat Film NaCl) 2917, 1698, 1606, 1504, 1463, 1408, 1248, 1184, 1123, 1024, 753 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₄H₂₈NO₃ [M+H]⁺: 378.2064, found 378.2060. (*S*,*E*)-3-(But-2-en-1-yl)-1-(2-methoxyphenyl)-3-(4-methylbenzoyl)pyrrolidin-2one (21)

Lactam **21** was prepared according to the general procedure 3 from **SI13**, and isolated by flash column chromatography (1:8 EtOAc:hexanes) on silica gel as a pale yellow oil. 51.0 mg, 70% yield, 86% ee. $[\alpha]_D^{25}$ +45.5° (c 2.10, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, J = 8.3 Hz, 2H), 7.34 – 7.19 (m, 4H), 7.03 – 6.94 (m, 2H), 5.63 – 5.43 (m, 2H), 3.92 – 3.86 (m, 1H), 3.84 (s, 3H), 3.73 – 3.62 (m, 1H), 2.94 – 2.72 (m, 3H), 2.39 (s, 3H), 2.20 (ddd, J = 13.2, 8.7, 5.3 Hz, 1H), 1.68 (dq, J = 6.3, 1.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.0, 173.5, 155.0, 143.0, 133.7, 129.8, 129.5, 129.5, 128.9, 128.3, 127.0, 125.4, 120.9, 112.1, 60.7, 55.6, 47.4, 39.1, 28.9, 21.6, 18.2; IR (Neat Film NaCl) 2917, 1698, 1606, 1504, 1463, 1408, 1254, 1185, 1122, 1045, 1024, 973, 837, 750 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₃H₂₆NO₃ [M+H]⁺: 364.1907, found 364.1909.

Lactam **22** was prepared according to the general procedure 3 from **SI14**, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a white foam. 51.1 mg, 60% yield, 86% ee. $[\alpha]_D^{25}$ +55.5° (c 0.93, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 8.06 (m, 2H), 7.37 – 7.34 (m, 2H), 7.32 – 7.27 (m, 3H), 7.26 – 7.20 (m, 4H), 6.99 – 6.94 (m, 2H), 6.52 (d, *J* = 15.8 Hz, 1H), 6.29 (dt, *J* = 15.5, 7.6 Hz, 1H), 3.91 – 3.85 (m, 1H), 3.80 (s, 3H), 3.75 (ddd, *J* = 9.6, 8.7, 5.7 Hz, 1H), 3.08 – 3.03 (m, 2H), 2.85 (ddd, *J* = 13.3, 8.9, 5.8 Hz, 1H), 2.41 (s, 3H), 2.30 (ddd, *J* = 13.5, 8.7, 5.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 197.9, 173.3, 155.0, 143.1, 137.3, 134.2, 133.5, 129.4, 129.0, 129.0, 128.5, 128.3, 127.4, 126.8, 126.2, 124.8, 121.0, 112.1, 60.7, 55.6, 47.3, 39.4, 28.8, 21.6; IR (Neat Film NaCl) 2961, 1698, 1606, 1504, 1463, 1409, 1279, 1255, 1185, 1025, 971, 911, 742, 694 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₈H₂₈NO₃ [M+H]⁺: 426.2064, found 426.2067. (*S*,*E*)-1-(2-Methoxyphenyl)-3-(4-methylbenzoyl)-3-(3-(p-tolyl)allyl)pyrrolidin-2one (23)

Lactam **23** was prepared according to the general procedure 3 from **SI15**, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a pale yellow oil. 74.2 mg, 85% yield, 88% ee. $[\alpha]_D^{25}$ +56.0° (c 2.93, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, J = 8.3 Hz, 2H), 7.33 – 7.25 (m, 2H), 7.25 – 7.19 (m, 4H), 7.14 – 7.08 (m, 2H), 7.00 – 6.93 (m, 2H), 6.49 (d, J = 15.7 Hz, 1H), 6.23 (dt, J = 15.5, 7.6 Hz, 1H), 3.92 – 3.83 (m, 1H), 3.81 (s, 3H), 3.78 – 3.69 (m, 1H), 3.04 (d, J = 7.6 Hz, 2H), 2.85 (ddd, J = 13.2, 8.9, 5.8 Hz, 1H), 2.40 (s, 3H), 2.39 – 2.25 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 197.9, 173.4, 155.0, 143.1, 137.1, 134.5, 134.0, 133.5, 129.4, 129.2, 129.0, 129.0, 128.3, 126.8, 126.1, 123.6, 121.0, 112.0, 60.7, 55.6, 47.4, 39.4, 28.8, 21.6, 21.2; IR (Neat Film NaCl) 2920, 1694, 1606, 1505, 1463, 1409, 1279, 1254, 1184, 1121, 1045, 1025, 974, 911, 838, 752 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₉H₃₀NO₃ [M+H]⁺: 440.2220, found 440.2220.

(*S*,*E*)-1-(2-Methoxyphenyl)-3-(3-(4-methoxyphenyl)allyl)-3-(4-methylbenzoyl) pyrrolidin-2-one (24)

Lactam **24** was prepared according to the general procedure 3 from **SI16**, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a white foam. 62.0 mg, 68% yield, 88% ee. $[\alpha]_D^{25}$ +57.6° (c 1.09, CHCl₃, 88% ee); ¹H NMR (500 MHz, CDCl₃) δ 8.11 – 8.05 (m, 2H), 7.34 – 7.26 (m, 3H), 7.26 – 7.17 (m, 3H), 7.00 – 6.93 (m, 2H), 6.87 – 6.81 (m, 2H), 6.46 (d, *J* = 15.7 Hz, 1H), 6.13 (dt, *J* = 15.5, 7.5 Hz, 1H), 3.88 (td, *J* = 9.2, 4.9 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.80 – 3.67 (m, 1H), 3.03 (dt, *J* = 7.6, 1.4 Hz, 2H), 2.85 (ddd, *J* = 13.2, 8.9, 5.8 Hz, 1H), 2.40 (s, 3H), 2.35 – 2.23 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 197.9, 173.4, 159.0, 155.0, 143.1, 133.5, 130.1, 129.4, 129.0, 128.9, 128.3, 127.4, 126.8, 122.4, 121.0, 113.9, 112.1, 60.8, 55.6, 55.3, 47.4, 39.4, 28.8, 21.6; IR (Neat Film NaCl) 2957, 1699, 1607, 1505, 1464, 1249, 1175, 1027, 838, 752 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₉H₃₀NO₄ [M+H]⁺: 456.2169, found 456.2164. (*S*,*E*)-3-(3-(4-Fluorophenyl)allyl)-1-(2-methoxyphenyl)-3-(4-methylbenzoyl) pyrrolidin-2-one (25)

Lactam **25** was prepared according to the general procedure 3 from **SI17**, and isolated by flash column chromatography (1:10 EtOAc:hexanes) on silica gel as a white foam. 55.3 mg, 62% yield, 83% ee. $[\alpha]_D^{25}$ +40.7° (c 0.55, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 8.05 (m, 2H), 7.34 – 7.27 (m, 3H), 7.25 – 7.19 (m, 3H), 7.02 – 6.94 (m, 4H), 6.51 – 6.44 (m, 1H), 6.20 (dt, *J* = 15.5, 7.6 Hz, 1H), 3.88 (ddd, *J* = 9.6, 8.9, 5.0 Hz, 1H), 3.79 (s, 3H), 3.78 – 3.71 (m, 1H), 3.09 – 2.99 (m, 2H), 2.86 (ddd, *J* = 13.3, 8.9, 5.7 Hz, 1H), 2.41 (s, 3H), 2.37 – 2.24 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 13C NMR (126 MHz, Chloroform-d) δ 197.9, 173.4, 162.3 (d, *J* = 246.6 Hz), 155.1, 143.3, 133.59 (d, *J* = 2.1 Hz), 133.56, 133.1, 129.6, 129.2, 129.1, 128.3, 127.8 (d, *J* = 7.8 Hz), 126.9, 124.7 (d, *J* = 2.2 Hz), 121.1, 115.6 (d, *J* = 21.6 Hz), 112.2, 60.8, 55.8, 47.5, 39.5, 29.1, 21.8; IR (Neat Film NaCl) 2944, 1693, 1604, 1505, 1460, 1412, 1254, 1228, 1184, 1158, 1045, 1024, 910, 838, 753, 731 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₈H₂₇FNO₃ [M+H]⁺: 444.1969, found 444.1969.

(*S*,*E*)-1-(2-Methoxyphenyl)-3-(4-methylbenzoyl)-3-(3-(thiophen-3-yl)allyl) pyrrolidin-2-one (26)

Lactam **26** was prepared according to the general procedure 3 from **SI18**, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a pale yellow oil. 65.2 mg, 76% yield, 83% ee. $[\alpha]_D^{25}$ +46.7° (c 1.17, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.12 – 8.01 (m, 2H), 7.33 – 7.14 (m, 6H), 7.10 (dd, *J* = 3.0, 1.2 Hz, 1H), 7.00 – 6.93 (m, 2H), 6.53 (d, *J* = 15.7 Hz, 1H), 6.13 (dt, *J* = 15.5, 7.6 Hz, 1H), 3.88 (td, *J* = 9.1, 4.9 Hz, 1H), 3.81 (s, 3H), 3.79 – 3.68 (m, 1H), 3.01 (dd, *J* = 7.7, 1.3 Hz, 2H), 2.85 (ddd, *J* = 13.3, 8.9, 5.8 Hz, 1H), 2.40 (s, 3H), 2.28 (ddd, *J* = 13.5, 8.8, 5.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 173.3, 155.0, 143.2, 139.9, 133.4, 129.4, 129.0, 129.0, 128.4, 128.2, 126.8, 126.0, 125.0, 124.6, 121.5, 121.0, 112.1, 60.7, 55.6, 47.3, 39.3, 28.8, 21.6; IR (Neat Film NaCl) 2958, 1698, 1606, 1504, 1463, 1409, 1302,1279, 1254, 1184, 1122, 1024, 967, 836, 753 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₆H₂₆NO₃S [M+H]⁺: 432.1628, found 432.1622. (*S*)-1-(2-Methoxyphenyl)-3-(4-methylbenzoyl)-3-((2*E*,4*E*)-5-phenylpenta-2,4dien-1-yl)pyrrolidin-2-one (27)

Lactam **27** was prepared according to the general procedure 3 from **SI19**, and isolated by flash column chromatography (1:5 EtOAc:hexanes) on silica gel as a pale yellow oil. 31.7 mg, 35% yield, 84% ee. $[\alpha]_D^{25}$ +40.6° (c 1.45, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.13 – 8.06 (m, 2H), 7.43 – 7.36 (m, 2H), 7.34 – 7.27 (m, 3H), 7.26 – 7.19 (m, 4H), 7.04 – 6.93 (m, 2H), 6.76 (ddd, *J* = 15.7, 10.5, 0.9 Hz, 1H), 6.49 (d, *J* = 15.7 Hz, 1H), 6.40 – 6.27 (m, 1H), 5.87 (dt, *J* = 15.2, 7.7 Hz, 1H), 3.90 (ddd, *J* = 9.5, 8.8, 5.1 Hz, 1H), 3.85 (s, 3H), 3.77 – 3.70 (m, 1H), 3.08 – 2.93 (m, 2H), 2.86 (ddd, *J* = 13.3, 8.8, 5.6 Hz, 1H), 2.40 (s, 3H), 2.25 (ddd, *J* = 13.5, 8.7, 5.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 173.2, 155.0, 143.1, 137.3, 134.8, 133.5, 131.6, 129.5, 129.1, 129.0, 129.0, 128.7, 128.6, 128.4, 127.4, 126.8, 126.3, 121.0, 112.1, 60.8, 55.7, 47.3, 39.3, 29.0, 21.6; IR (Neat Film NaCl) 3024, 1694, 1606, 1505, 1463, 1409, 1304, 1253, 1185, 1122, 1045, 1026, 992, 910, 747, 693 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₃₀H₃₀NO₃ [M+H]⁺: 452.2220, found 452.2220.

Procedures/Spectroscopic Data for Derivatization of C-Acylation Products

(S)-3-Benzoyl-3-methylpyrrolidin-2-one (28)

To a solution lactam **4b** (93% ee, 40.0 mg, 0.129 mmol, 1.00 equiv) in MeCN (0.6 mL) and water (0.6 mL) was added CAN (424 mg, 0.774 mmol, 6.00 equiv) and the reaction mixture was stirred at 70 °C for 24 h. The reaction mixture was allowed to cool to ambient temperature and brine (5 mL) was added. The reaction mixture was extracted with EtOAc (30 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (1:2 to 2:1 EtOAc:hexanes) on silica gel to give lactam **28** as a white solid (19.6 mg, 75% yield). $[\alpha]_D^{25}$ +25.7° (c 0.20, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.05 – 7.99 (m, 2H), 7.56 – 7.48 (m, 1H), 7.47 – 7.39 (m, 2H), 5.83 (s, 1H), 3.59 – 3.50 (m, 1H), 3.50 – 3.42 (m, 1H), 2.92 (ddd, *J* = 13.4, 8.1, 5.5 Hz, 1H), 2.08 (ddd, *J* = 13.3, 8.1, 5.5 Hz, 1H), 1.60 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.1, 178.3, 135.7, 132.5, 129.1, 128.4, 55.9, 39.6, 34.5, 21.5; IR (Neat Film NaCl) 3246, 2978, 1667, 1595, 1444,

1307, 1265, 1207, 1008, 973, 782, 701, 651 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₂H₁₄NO₂ [M+H]⁺: 204.1019, found 204.1015.

(S)-3-((S)-Hydroxy(phenyl)methyl)-1-(2-methoxyphenyl)-3-methylpyrrolidin-2one (29)

To a solution lactam 4b (92% ee, 99.5 mg, 0.322 mmol, 1.00 equiv) in TFA (1.6 mL) was added Et₃SiH (0.102 mL, 0.643 mmol, 2.00 equiv) and the reaction mixture was stirred at ambient temperature for 24 h. CH₂Cl₂ (4 mL) and 2 M NaOH aqueous solution (8 mL) was added and the reaction mixture was stirred at ambient temperature for 3 h. The mixture was extracted with CH₂Cl₂ (30 mL, twice), washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (1:2 EtOAc:hexanes) on silica gel to give lactam **29** as a white solid (90.2 mg, 90% yield). $\left[\alpha\right]_{D}^{25}$ -12.5° (c 1.10. CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.49 - 7.43 (m, 2H), 7.43 - 7.27 (m, 4H), 7.22 (dd, J = 7.7, 1.7 Hz, 1H), 7.03 – 6.94 (m, 2H), 5.18 (br s, 1H), 4.99 (s, 1H), 3.84 (s, 3H), 3.69 (td, J = 9.4, 6.9 Hz, 1H), 3.54 (ddd, J = 9.6, 8.8, 2.2 Hz, 1H), 2.31 $(dt, J = 12.6, 9.0 \text{ Hz}, 1\text{H}), 1.54 (ddd, J = 12.6, 6.9, 2.2 \text{ Hz}, 1\text{H}), 1.27 (s, 3\text{H}); {}^{13}\text{C}$ NMR (126 MHz, CDCl₃) δ 180.3, 154.8, 139.4, 129.1, 128.5, 127.9, 127.7, 127.3, 126.5, 120.9, 112.1, 77.8, 55.7, 47.3, 46.9, 30.8, 15.6; IR (Neat Film NaCl) 3400, 2966, 1672, 1596, 1504, 1459, 1413, 1305, 1281, 1256, 1180, 1161, 1121, 1082, 1046, 1026, 917, 885, 753, 725, 703, cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for $C_{19}H_{22}NO_3 [M+H]^+$: 312.1594, found 312.1595.

(R)-1-(4-Methoxyphenyl)-3-methyl-2-oxopyrrolidin-3-yl benzoate (30)

To a solution lactam **4a** (88% ee, 30.9 mg, 0.100 mmol, 1.00 equiv) in CH₂Cl₂ (1 mL) and were added NaHCO₃ (42.0 mg, 0.500 mmol, 5.00 equiv) and *m*-CPBA (75%, 115.0 mg, 0.500 mmol, 5.00 equiv) and the reaction mixture was stirred at ambient temperature for 20 h. 10% NaHCO₃ aqueous solution (3 mL) and brine (3 mL) were added and the mixture was extracted with CH₂Cl₂ (30 mL, twice), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (1:5 EtOAc:hexanes) on silica gel to give lactam **30** as a white solid (17.1 mg, 53% yield, 88% ee). $[\alpha]_D^{25}$ –3.3° (c 0.25, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 8.03 (m, 2H), 7.63 – 7.53 (m, 3H), 7.47 – 7.40 (m, 2H), 6.96 – 6.89 (m, 2H), 3.96 (td, *J* = 9.6, 3.2 Hz, 1H), 3.82 (s, 4H), 2.83 – 2.74 (m, 1H), 2.40 (ddd, *J*

= 13.3, 8.1, 3.2 Hz, 1H), 1.75 (d, J = 0.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 165.5, 156.9, 133.2, 132.5, 129.9, 129.9, 128.3, 121.9, 114.1, 81.2, 55.5, 44.9, 30.6, 23.3; IR (Neat Film NaCl) 2963, 1705, 1512, 1451, 1403, 1317, 1292, 1251, 1136, 1116, 1091, 1072, 1032, 828, 715 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₉H₂₀NO₄ [M+H]⁺: 326.1387, found 326.1381.

(*R*)-4-Methoxyphenyl-1-(2-methoxyphenyl)-3-methyl-2-oxopyrrolidine-3carboxylate (31)

To a solution of lactam 10 (160 mg, 0.471 mmol, 1.00 equiv) in CH₂Cl₂ (9.4 mL) was added m-CPBA (75%, 1.08 g, 4.71 mmol, 10.0 equiv) and the reaction mixture was stirred at ambient temperature for 24 h and then refluxed for 48 h. The reaction mixture was allowed to cool to ambient temperature and 10% Na₂SO₃ aqueous solution (30 mL) and saturated NaHCO₃ aqueous solution (10 mL) were added. The mixture was extracted with CH₂Cl₂ (130 mL), washed with brine (20 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (1:5 EtOAc:hexanes) on silica gel to give lactam 31 as a pale yellow oil (54.2 mg, 32% yield). $[\alpha]_D^{25}$ -11.7° (c 0.56, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.09 – 7.02 (m, 2H), 7.02 – 6.93 (m, 2H), 6.93 – 6.85 (m, 2H), 3.92 - 3.75 (m, 2H), 3.81 (s, 3H), 3.80 (s, 3H), 2.84 (ddd, J = 12.9, 7.8, 4.5Hz, 1H), 2.21 (ddd, J = 12.9, 8.3, 6.8 Hz, 1H), 1.67 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) & 172.9, 171.6, 157.3, 154.9, 144.3, 129.0, 128.6, 126.9, 122.2, 120.9, 114.4, 112.1, 55.7, 55.6, 51.8, 47.1, 32.1, 20.2; IR (Neat Film NaCl) 2936, 1760, 1699, 1597, 1505, 1463, 1410, 1305, 1251, 1193, 1112, 1088, 1027, 754 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₂₀H₂₂NO₅ [M+H]⁺: 356.1492, found 356.1489.

(R)-Ethyl-1-(2-methoxyphenyl)-3-methyl-2-oxopyrrolidine-3-carboxylate (32)

To a solution of lactam **31** (36.0 mg, 0.101 mmol, 1.00 equiv) in EtOH (2.0 mL) was added K₂CO₃ (70.0 mg, 0.506 mmol, 5.00 equiv) and the reaction mixture was stirred at ambient temperature for 30 h. The reaction mixture was concentrated under reduced pressure and brine was added to the residue. The mixture was extracted with EtOAc (15 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (1:2 EtOAc:hexanes) on silica gel to give lactam **32** as a pale yellow oil (20.5 mg, 73% yield). $[\alpha]_D^{25}$ -14.6° (c 0.98, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.24 (m, 2H), 7.03 – 6.88 (m, 2H), 4.31 – 4.17 (m, 2H), 3.83 (s, 3H), 3.82 – 3.70 (m, 2H), 2.64 (ddd, *J* = 12.8, 7.0, 4.7 Hz,

(R)-Ethyl-3-methyl-2-oxopyrrolidine-3-carboxylate (33)

To a solution lactam **32** (20.0 mg, 0.0721 mmol, 1.00 equiv) in MeCN (1.5 mL) and water (1.5 mL) was added CAN (237 mg, 0.433 mmol, 6.00 equiv) and the reaction mixture was stirred at 40 °C for 24 h. The reaction mixture was allowed to cool to ambient temperature and 10% Na₂SO₃ aqueous solution (3 mL) and brine (3 mL) were added. The reaction mixture was extracted with EtOAc (20 mL, twice), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (2:1 EtOAc:hexanes) on silica gel to give lactam **33** as a white solid (2.0 mg, 16% yield). $[\alpha]_D^{25}$ +19.5° (c 0.09, MeOH) (reported data $[\alpha]_D^{25}$ +19.0° (c 2, MeOH))⁸; ¹H NMR (500 MHz, CDCl₃) δ 5.83 (br s, 1H), 4.21 (m, 2H), 3.53 – 3.44 (m, 1H), 3.40 – 3.31 (m, 1H), 2.65 (ddd, *J* = 12.8, 7.8, 4.0 Hz, 1H), 2.05 (ddd, *J* = 13.0, 8.4, 7.0 Hz, 1H), 1.46 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.8, 172.4, 61.8, 50.6, 39.6, 34.2, 20.2, 14.3; IR (Neat Film NaCl) 3245, 2981, 1703, 1454, 1266, 1196, 1138, 1028 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₈H₁₃NO₃ [M]⁺: 171.0968, found 171.0965.

Procedures/Spectroscopic Data for Isolation/Reduction of Imine Intermediates

(S)-1-(4-Methoxyphenyl)-3-methyl-3-((phenylimino)(*o*-tolyl)methyl)pyrrolidin-2one (34)

To a suspension of lactam **1a** (82.1 mg, 0.400 mmol, 2.00 equiv), *o*-tolunitrile **2b** (23.4 mg, 0.200 mmol, 1.00 equiv), bromobenzene **3b** (31.5 μ L, 0.300 mmol, 1.5 equiv), LHMDS (40.2 mg, 0.240 mmol, 1.20 equiv) and LiBr (86.9 mg, 1.00 mmol, 5.00 equiv) in toluene (1.0 mL) and THF (0.20 mL) were added a solution of Ni(COD)₂ (5.50 mg, 0.0200 mmol, 0.100 equiv) and SL-M004-1(Solvias, 25.3 mg, 0.0240 mmol, 0.120 equiv) at 25 °C and the reaction mixture was stirred at 25 °C for

⁸ Banerjee, S.; Smith, J.; Smith, J.; Faulkner, F.; Masterson, D. S. J. Org. Chem. 2012, 77, 10925–10930.

24 h. The reaction mixture was filtered through a pad of silica gel eluting with EtOAc (60 mL). The eluate was concentrated under reduced pressure and the residue was purified by flash column chromatography (1:10 EtOAc:hexanes) on silica gel to give imine 34 as a white foam (62 mg, 77% yield, 60/40 mixture of E/Z isomers). 1 H NMR (500 MHz, CDCl₃) for major isomer: δ 7.65 – 6.62 (m, 8H), 3.86 (s, 3H), 3.76 12.6, 7.9, 4.6 Hz, 1H), 2.17 (ddd, J = 12.8, 8.2, 6.6 Hz, 1H), 2.06 (s, 3H), 1.66 (s, 3H); for minor isomer: δ 7.61 – 6.62 (m, 8H), 4.09 (dt, J = 9.1, 7.7 Hz, 1H), 3.85 (s, 3H), 3.82 (td, J = 8.8, 3.6 Hz, 1H), 3.15 (ddd, J = 12.5, 7.8, 3.6 Hz, 1H), 2.27 - 2.20 (m, 1H), 2.07 (s, 3H), 1.66 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) for major and minor isomer: δ 175.1, 174.8, 174.7, 172.2, 156.7, 149.9, 136.1, 135.8, 134.2, 133.3, 132.9, 132.7, 130.1, 129.8, 128.4, 128.3, 128.1, 128.0, 124.8, 124.7, 123.56, 123.4, 122.98, 122.0, 120.59, 120.3, 114.0, 55.8, 55.5, 54.7, 47.0, 46.3, 33.4, 31.2, 22.5, 22.0, 20.5, 20.3; IR (Neat Film NaCl) 2931, 1688, 1512, 1485, 1398, 1289, 1249, 1181, 1090, 1033, 993, 829, 766, 731, 697 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for $C_{26}H_{27}N_2O_2$ [M+H]⁺: 399.2067, found 399.2072.

(S)-1-(2-Methoxyphenyl)-3-methyl-3-(phenyl(phenylamino)methyl)pyrrolidin-2one (36)

To a suspension of lactam **1b** (82.1 mg, 0.400 mmol, 2.00 equiv), benzonitrile **2a** (20.6 mg, 0.200 mmol, 1.00 equiv), bromobenzene **3b** (31.5 μ L, 0.300 mmol, 1.5 equiv), LHMDS (40.2 mg, 0.240 mmol, 1.20 equiv) and LiBr (86.9 mg, 1.00 mmol, 5.00 equiv) in toluene (1.0 mL) and THF (0.20 mL) were added a solution of Ni(COD)₂ (5.50 mg, 0.0200 mmol, 0.100 equiv) and SL-M004-1(Solvias, 25.3 mg, 0.0240 mmol, 0.120 equiv) at 0 °C and the reaction mixture was stirred at 0 °C for 48 h. NaBH₄ (45.4 mg, 1.20 mmol, 6 equiv), THF (2 mL) and MeOH (2 mL) were added and the reaction mixture was stirred at 25 °C for 2 days. Water was added and the mixture was extracted with EtOAc (50 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (1:5 EtOAc:hexanes) on silica gel to give amine **36** as a colorless oil (54.3 mg, 70% yield).

Spectroscopic data for amine **36** was taken after separation of the diastereomers by flash column chromatography on silica gel.

Major isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.53 – 7.49 (m, 2H), 7.38 – 7.32 (m, 2H), 7.31 – 7.23 (m, 2H), 7.12 (dd, J = 7.7, 1.7 Hz, 1H), 7.06 – 7.00 (m, 2H), 6.95 (td, J = 7.6, 1.3 Hz, 1H), 6.91 (dd, J = 8.3, 1.2 Hz, 1H), 6.62 (t, J = 7.3 Hz, 1H), 6.50 (d, J

= 7.9 Hz, 2H), 5.51 (s, 1H), 4.53 – 4.48 (m, 1H), 3.60 (s, 3H), 3.59 – 3.50 (m, 2H), 2.42 (ddd, J = 12.7, 7.6, 4.7 Hz, 1H), 1.81 (ddd, J = 13.0, 8.3, 6.8 Hz, 1H), 1.34 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 177.9, 154.9, 148.3, 139.8, 129.0, 128.9, 128.6, 128.6, 128.2, 127.5, 127.0, 120.8, 117.4, 114.1, 112.9, 62.9, 55.4, 47.6, 46.7, 31.0, 19.7; IR (Neat Film NaCl) 3375, 2968, 1678, 1601, 1505, 1455, 1310, 1279, 1260, 1025, 749, 702 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₅H₂₇N₂O₂ [M+H]⁺: 387.2067, found 387.2070.

Minor isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.48 – 7.42 (m, 2H), 7.35 – 7.20 (m, 4H), 7.09 – 6.98 (m, 3H), 6.98 – 6.90 (m, 2H), 6.58 – 6.47 (m, 3H), 6.19 (br s, 1H), 4.37 (s, 1H), 3.78 (s, 3H), 3.41 (td, *J* = 9.1, 4.7 Hz, 1H), 2.62 (ddd, *J* = 9.4, 8.4, 6.4 Hz, 1H), 2.27 (ddd, *J* = 13.1, 8.4, 4.7 Hz, 1H), 1.98 (ddd, *J* = 13.0, 8.9, 6.4 Hz, 1H), 1.61 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 177.3, 154.6, 147.2, 140.6, 129.0, 128.8, 128.3, 128.3, 127.7, 127.5, 126.8, 120.7, 116.4, 112.9, 112.0, 64.5, 55.6, 47.2, 46.8, 30.8, 24.8; IR (Neat Film NaCl) 3375, 2929, 1674, 1600, 1505, 1455, 1418, 1308, 1256, 1026, 748, 704 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₅H₂₇N₂O₂ [M+H]⁺: 387.2067, found 387.2071.

entry	compound	analytic conditions	ee (%)
1		HPLC CHIRALCELL OD,	88
2		HPLC CHIRALCELL OD,	92
3		HPLC CHIRALCELL OD, ᠌ = 254 nm 10% IPA/hexanes, 1.0 mL/min t _R (min): major 23.56, minor 16.84	85
4	OiPr 4d	HPLC CHIRALCELL OD,	86
5		HPLC CHIRALCELL OD,	91

Determination of Enantiomeric Excess (Table S6)

entry	compound	analytic conditions	ee (%)
6	OMe 7	SFC Chiralpak OJ-H, λ = 254 nm 15% IPA/CO₂, 2.5 mL/min, t _R (min): major 4.20, minor 5.72	93
7		HPLC CHIRALCELL OD, λ = 254 nm 30% IPA/hexanes, 1.0 mL/min t_R (min): major 8.14, minor 6.64	94
8	OMe 9	HPLC CHIRALCELL OD, λ = 254 nm 15% IPA/hexanes, 1.0 mL/min t _R (min): major 11.57, minor 9.83	92
9		HPLC CHIRALCELL OD, λ = 254 nm 15% IPA/hexanes, 1.0 mL/min t _R (min): major 11.57, minor 9.83	89
10		HPLC CHIRALCELL OD, λ = 254 nm 20% IPA/hexanes, 1.0 mL/min t _R (min): major 11.36, minor 9.98	93
11	OMe 12	HPLC CHIRALCELL OD, λ = 254 nm 30% IPA/hexanes, 1.0 mL/min t_R (min): major 7.41, minor 6.76	87
12	OMe 13	HPLC CHIRALCELL OD, λ = 254 nm 10% IPA/hexanes, 1.0 mL/min t _R (min): major 26.83, minor 23.63	91
13	Me 14	HPLC CHIRALCELL OD, λ = 254 nm 30% IPA/hexanes, 1.0 mL/min t _R (min): major 8.24, minor 6.39	78
14	OMe Ph	SFC Chiralpak OJ-H, λ = 254 nm 2% IPA/CO ₂ , 2.5 mL/min, t _R (min): major 7.25, minor 6.34	81
15	Me 16 OMe	HPLC CHIRALCELL OD, λ = 254 nm 30% IPA/hexanes, 1.0 mL/min t _R (min): major 11.24, minor 8.72	81

entry	compound	analytic conditions	ee (%)
16	OMe 17 F	HPLC CHIRALCELL OD,	74
17	$ \begin{array}{c} $	HPLC CHIRALCELL OD,	71
18	OMe 19 OBn	HPLC CHIRALCELL OD, ₪ = 254 nm 30% IPA/hexanes, 1.0 mL/min t _R (min): major 11.38, minor 8.47	60
19		HPLC CHIRALCELL OD,	76
20	$ \begin{array}{c} $	HPLC CHIRALCELL OD,	86
21	OMe 22 Ph	HPLC CHIRALCELL OD,	86
22	OMe 23	HPLC CHIRALCELL OD, ₪ = 254 nm 30% IPA/hexanes, 1.0 mL/min t _R (min): major 11.30, minor 7.58	86
23		HPLC CHIRALCELL OD, ₪ = 254 nm 40% IPA/hexanes, 1.0 mL/min t _R (min): major 11.68, minor 7.70	88
entry	compound	analytic conditions	ee (%)
-------	----------------	---	--------
24	OMe 25 F	HPLC CHIRALCELL OD,	83
25		HPLC CHIRALCELL OD, ₪ = 254 nm 30% IPA/hexanes, 1.0 mL/min t _R (min): major 14.39, minor 8.96	83
26	OMe 27 Ph	HPLC CHIRALCELL OD,	84
27	MeO OBz 30	HPLC CHIRALCELL OD, ₪ = 254 nm 30% IPA/hexanes, 1.0 mL/min t _R (min): major 10.42, minor 7.88	88

HPLC Traces of Enantioenriched and Racemic Compounds

Enantioenriched 4a

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Ar	rea	Hei	.ght	Area
#	[min]		[min]	mAU .	*s	[mAU]	90
1	7.970	BB	0.2421	546.	70709	34.	68962	5.9783
2	10.270	BB	0.3360	8598.	20117	389.	71198	94.0217

Racemic 4a

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Type	Width	A	rea	Heig	Jht	Area
#	[min]		[min]	mAU	*s	[mAU]	Ş
1	7.916	VV	0.2412	4668	.71631	297.0	54624	50,1248
2	10.295	BB	0.3388	4645	.46973	210.	70407	49.8752

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Ar	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	7,552	VV	0.2493	419.	17737	25.	60274	3.8063
2	8.317	VV	0.3400	1.059	34e4	472.	39438	96.1937

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak #	RetTime [min]	Туре	Width [min]	Ar mAU	rea *s	Heig [mAU	ght]	Area %
1	7.509	VV	0.2595	962.	35553	56.5	59516	49.9432
2	8.472	vv	0.3475	964.	54327	41.8	34590	50.0568

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	A	cea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	98
1	16.835	BB	0.5366	3167.	57788	86.9	91119	7.4539
2	23.559	BB	1.0162	3.932	278e4	528.3	31799	92.5461

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak #	RetTime [min]	Туре	Width [min]	A: mAU	rea *s	Heiq [mAU	ght]	Area %	
									l
1	16.685	BB	0.5277	6760	.87500	188.7	78192	49,9613	
2	24.591	BB	0.9114	6771	.34570	100.4	17928	50.0387	

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Ar	ea	Heic	ght	Area
#	[min]		[min]	mAU	*S	[mAU]	8
1	6.387	VV	0.1927	1011.	20123	80.7	73458	6.8009
2	7.032	VB	0.2611	1.385	74e4	791.4	15978	93.1991

Racemic 4d

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak #	RetTime [min]	Туре	Width [min]	Ar mAU	rea *s	Heio [mAU	ght 1	Area %
1								
1	6.327	vv	0.1948	1.799	02e4	1416.5	52100	49.4975
2	7.000	VV	0.2563	1.835	55e4	1061,5	55359	50.5025

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Type	Width	A	rea	Heig	ht	Area
#	[min]		[min]	mAU	*s	[mAU]	90
		!						
1	7,660	MM	0.3166	144	.13167	7.5	8799	4.6100
2	10.510	MM	0,5652	2982	.38501	87.9	4354	95,3900

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak #	RetTime [min]	Туре	Width [min]	Ar mAU	rea *s	Heig [mAU	ght]	Area %
1	7.343	VV	0.2678	1.099	13e4	620.5	51941	50.8581
2	9.964	BB	0.4702	1.062	204e4	339.3	6516	49.1419

Signal 1: DAD1 D, Sig=254,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4W209	BB	OW1282	2253W46313	262W25006	96W3032
2	5.722	BB	0.1704	86.50503	7.50950	3.6968

Racemic 7

Signal 1: DAD1 D, Sig=254,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.259	VV	0.1298	694.25641	79.58466	49,2289
2	5.781	VB	0.1742	716.00562	60.44555	50.7711

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	A	rea	Heig	ht	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	6.637	MM	0.2295	311.	.01620	22.5	8909	3.2230
2	8.144	BB	0.3047	9338.	.78906	458.2	8555	96,7770

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	A	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	6.401	MM	0.2226	3145	.66260	235.	50081	50.9184
2	7.989	MM	0.3119	3032	.18726	162.0	00626	49.0816

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	A	rea	Heiq	ght	Area	
#	[min]		[min]	mAU	*s	[mAU]	8	
1	9.830	BB	0.3083	880	.24518	36.3	35216	4.0655	
2	11.574	BB	0.4560	2.07	713e4	680.2	24872	95.9345	

Racemic 9

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak #	RetTime [min]	Туре	Width [min]	A: mAU	rea *s	Heic [mAU	ght 1	Area %
1	9.699	VB	0.3601	7834	.94385	328.0	8548	50.2941
. 2	11.692	BB	0.4416	7743	.31348	259.5	8081	49.7059

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Ar	rea	Heig	ht	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	9,679	BB	0.4039	155.	84964	5.9	0742	5.5248
2	13.982	BB	0.6563	2665.	06104	61.5	8629	94.4752

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak #	RetTime [min]	Туре	Width [min]	Aı mAU	rea *s	Heig [mAU	ght]	Area %
1	9.577	MM	0.4335	535	.76001	20.5	59646	50.6705
2	14.033	BB	0.6633	521	.58105	11.8	32115	49.3295

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Aı	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU)	8
1	9.982	BB	0.3287	258.	02295	12.0)3555	3.2743
2	11.362	BB	0.3957	7622	17822	293.9	95724	96.7257

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak #	RetTime [min]	Туре	Width [min]	A: mAU	rea *s	Heiq [mAU	ght]	Area %	
							!		l
1	9.940	BB	0.3240	864	60724	40.0	53335	49.7122	
2	11.465	BB	0.4079	874	.61914	32.7	72326	50.2878	

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Type	Width	A	rea	Heig	ght	Area	
#	[min]		[min]	mAU	*s	[mAU]	8	
1	6.762	MM	0.2198	226	.98119	17.2	20738	6.4538	
2	7.413	MM	0.2618	3290	.02515	209.4	16428	93.5462	

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak #	RetTime [min]	Туре	Width [min]	A1 mAU	rea *s	Hei [mAU	ght]	Area %	
1	6.719	vv	0.2045	6015.	65381	452.	70663	49.6853	
2	7.389	VB	0.2480	6091.	85986	380.	36090	50.3147	

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	23.634	BB	1.1265	1615.	19861	21.5	51093	4.5468
2	26.826	BB	1.3489	3.390	84e4	369.9	6021	95.4532

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %	
1	22.528	BV	1.0853	2.95878e4	405.00653	49.7424	
2	26.702	VB	1.3034	2.98943e4	335.87433	50.2576	

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime Type		Width	n Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	clo
1	6.391	FM	0.2183	658	.05005	50.2	4549	10.9741
2	8.243	MM	0.3593	5338	.35156	247.6	0593	89.0259

Racemic 14

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	6.258	BB	0.2004	1.453	46e4	1118.0	64001	50.0252
2	8.035	BB	0.3225	1,451	99e4	674.5	57477	49.9748

Signal 1: DAD1 D, Sig=254,8 Ref=360,100

Peak #	RetTime {min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	6.337	BB	0.1875	1003.46246	80.45315	9.6628	
2	7.248	BB	0.2202	9381.38672	628,20355	90.3372	

Racemic 15

Signal 1: DAD1 D, Sig=254,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.272	BV	0.1748	1635.60449	139.48480	49.8108
2	7.217	BV	0.2156	1648.03210	113.37238	50.1892

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	A	rea	Heig	ght	Area
Ħ	[min]		[min]	mAU	*s	[mAU]	뭥
1	8.716	MM	0.4361	3146	52881	120.2	24094	9.4272
2	11.238	MM	0.9849	3.023	307e4	511.5	58353	90.5728

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Ar	ea	Hei	.ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	8.488	MM	0.4203	6869.	44971	272.	38535	50.3543
2	11.625	MM	0.8194	6772.	76904	137.	76001	49.6457

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	<u>р</u> о
1	7.510	VB	0.3194	1960	.32910	92.	18734	13,2220
2	9.399	BB	0.5009	1,28	659e4	380.	34464	86.7780

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	A	rea	Heig	ght	Area
#	[min]		[min]	mAU	*5	[mAU]	do D
1	7.440	VB	0.3011	5004	.45313	252.4	46498	49.9164
2	9.516	BB	0.5046	5021	.20752	148.3	16573	50.0836

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	olo
~								
1	7.490	MM	0.2468	1170	.83386	79.	07106	14.5555
2	8.395	MM	0.4170	6873	.11572	274.	67239	85.4445

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU	J	8
1	7.523	BV	0.2278	5321	.67188	360.	02539	49.8510
2	8,454	VB	0.3872	5353	.48389	199.	56226	50.1490

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU	1	90
1	8.473	MM	0.3933	1881	.25317	79.	72974	19.8866
2	11.379	BB	0.6331	7578	.62891	185.2	22310	80.1134

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Ar	ea.	Heig	ght	Area
# l	[min]		[min]	mAU 1	^s 	[mA0		°
1	8.392	vv	0.3593	1.113	856e4	472.	67834	50,0031
2	11.334	VB	0.6200	1.113	342e4	268.8	34927	49.9969

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	8
								!
1	7.126	VV	0.2498	2245.	89282	137.8	31743	11,9816
2	9.614	VV	0.4672	1.649	86e4	528.9	98590	88,0184

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	7.025	VB	0.2449	1.060	15e4	662.6	56174	50.3721
2	9.637	VB	0.4563	1.044	49e4	339.7	0584	49.6279

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	90
1	5.532	MM	0.1900	1268.	44031	111.2	27670	6.9105
2	7.108	MM	0.3285	1.708	867e4	866.9	95087	93.0895

Peak	RetTime	Туре	Width	A	rea	Hei	ght	Area	
#	[min]		[min]	mAU	*s	[mAU]	8	
									l
1	5.549	VV	0.1845	7924.	76514	670.	30969	49.9465	
2	7.251	VB	0.3080	7941.	73828	389.	12619	50.0535	

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Ar	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	do
1	8.068	VB	0.4006	1716.	73059	63.3	36018	6.9397
2	12.631	VB	0.7519	2.302	211e4	450.5	51941	93.0603

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Ar	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
]						
1	7.950	VV	0.3737	3.896	578e4	1563.9	95483	50.7303
2	12.484	VB	0.7278	3.784	59e4	779.9	90161	49.2697

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	7.579	MM	0.4115	1892.	42041	76.6	54381	6.1806
2	11.299	MM	0.7545	2.872	64e4	634,5	6439	93.8194

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	융
1	7.447	vv	0.3618	2,297	786e4	956.0	54764	50.8341
2	11.186	vv	0.6554	2.222	245e4	503.5	59616	49.1659

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Type	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	음
								!
1	7.703	MM	0.4346	838	.34082	32.	15023	6.1280
2	11.676	MM	0.9113	1.28	421e4	234.	87308	93.8720

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak #	RetTime [min]	Туре	Width [min]	A1 mAU	rea *s	Heiq [mAU]	ght]	Area %	
									l
1	7.651	vv	0.3944	1.96	770e4	753.0	3821	50.2390	
2	11.633	VB	0.7740	1,948	398e4	359.3	32120	49.7610	

7.5

Peak	RetTime	Туре	Width	Area		Height		Area	
#	[min]		[min]	mAU	*s	[mAU)	용	
									L
1	8.465	MM	0.4194	3449	.65381	137.0	8675	8.7075	
2	12.542	MM	0.8187	3.610	673e4	736,2	28906	91.2925	

10

12.5

15

17.5

min

0

2.5

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Type	Width	A	rea	Heig	ght	Area	
#	[min]		[min]	mAU	*s	[mAU]	98	
1	8.295	MM	0.4129	3241	.40137	130.8	33359	49.9056	
2	12.647	MM	0.8269	3253	.65771	65.5	57676	50.0944	

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Type	Width	A	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	90
1	8.960	MM	0.4562	3065	.75293	111.	99315	8.4060
2	14.387	VV	0.8581	3.34	055e4	575.2	20129	91.5940

Signal 1: VWD1 A, Wavelength=254 nm, TT

RetTime	Туре	Width	A	rea .	Heig	ght	Area	
[min]		[min]	mAU	*s	[mAU]	00	
				~				
8.982	VB	0.4267	9035	.82129	321.6	58460	51.3318	
14.868	VB	0.9000	8566	.96777	142.3	36986	48.6682	
	RetTime [min] 8.982 14.868	RetTime Type [min] 8.982 VB 14.868 VB	RetTime Type Width [min] [min] 	RetTime Type Width A [min] [min] mAU 8.982 VB 0.4267 9035 14.868 VB 0.9000 8566	RetTime Type Width Area [min] [min] mAU *s 8.982 VB 0.4267 9035.82129 14.868 VB 0.9000 8566.96777	RetTime Type Width Area Heig [min] [min] mAU *s [mAU 8.982 VB 0.4267 9035.82129 321.6 14.868 VB 0.9000 8566.96777 142.5	RetTime Type Width Area Height [min] [min] mAU *s [mAU]] 8.982 VB 0.4267 9035.82129 321.68460 14.868 VB 0.9000 8566.96777 142.36986	RetTime Type Width Area Height Area [min] [min] mAU *s [mAU] % 8.982 VB 0.4267 9035.82129 321.68460 51.3318 14.868 VB 0.9000 8566.96777 142.36986 48.6682

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak	RetTime	Туре	Width	A	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	6
1	12.321	MM	0.9359	715	.28571	12.7	73837	7.8108
2	18.487	MM	1,6456	8442	.39844	85.5	50481	92.1892

Signal 1: VWD1 A, Wavelength=254 nm, TT

Peak #	RetTime [min]	Туре	Width [min]	رA mAU	rea *s	Heig [mAU	ght]	Area %
								[
1	12.145	VB	0.6917	1.458	397e4	292.5	55313	50.8462
2	18.328	BB	1.1879	1.410	041e4	154.4	11762	49.1538

Peak	RetTime	Туре	Width	A	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	20
1	7.736	VB .	0.2465	1685	93127	103.2	27007	49.7714
2	10,313	BB	0.3633	1701	41809	68.3	33482	50.2286

Crystal Structure Data

Alcohol 29 was recrystallized from EtOAc to provide crystal suitable for X-ray analysis.

Table S4: Crystal data and structure refinement for alcohol 29.

Empirical formula	C19 H21 N O3		
Formula weight	311.37		
Temperature	100 K		
Wavelength	1.54178 Å		
Crystal system	Triclinic		
Space group	P1		
Unit cell dimensions	a = 6.7858(9) Å	α= 112.386(6)°	
	b = 7.7709(10) Å	β=91.911(6)°	
	c = 8.1797(10) Å	$\gamma = 96.499(9)^{\circ}$	
Volume	394.89(9) Å ³		
Z	1		
Density (calculated)	1.309 Mg/m ³		
Absorption coefficient	0.711 mm ⁻¹		
F(000)	166		
Crystal size	0.19 x 0.17 x 0.12 mm ³		
Theta range for data collection	5.871 to 72.981°		
Index ranges	-8<=h<=8, -9<=k<=9, -10<=l<	=10	
Reflections collected	12444		
Independent reflections	2932 [R(int) = 0.0325]		
Completeness to theta = 67.000°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.0000 and 0.9238		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2932 / 3 / 211		
Goodness-of-fit on F ²	1.092		
Final R indices [I>2sigma(I)]	R1 = 0.0285, wR2 = 0.0697		
R indices (all data)	R1 = 0.0296, wR2 = 0.0703		
Absolute structure parameter	0.02(7)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.176 and -0.261 e.Å ⁻³		

	Х	у	Z	U(eq)
O(1)	70090(20)	62880(20)	34186(18)	178(3)
O(2)	9069(19)	77400(20)	28393(18)	175(3)
O(3)	69940(20)	14730(20)	26787(18)	172(3)
N(1)	50020(20)	43460(20)	43790(20)	137(3)
C(1)	53610(30)	54880(30)	35010(20)	123(4)
C(2)	33840(30)	56260(30)	26220(20)	135(4)
C(3)	19350(30)	40330(30)	27870(30)	149(4)
C(4)	29190(30)	35310(30)	42320(30)	158(4)
C(5)	27750(30)	76160(30)	36140(20)	132(4)
C(6)	28240(30)	82550(30)	56170(20)	138(4)
C(7)	13000(30)	76680(30)	64700(30)	179(4)
C(8)	14580(30)	82500(30)	83020(30)	212(4)
C(9)	31000(30)	94650(30)	93140(30)	206(4)
C(10)	45860(30)	101060(30)	84900(30)	207(4)
C(11)	44560(30)	94920(30)	66480(30)	180(4)
C(12)	36380(30)	53530(30)	6900(20)	175(4)
C(13)	64750(30)	38630(30)	53590(20)	138(4)
C(14)	67970(30)	47950(30)	71850(30)	181(4)
C(15)	81200(30)	42280(30)	81500(30)	208(4)
C(16)	91090(30)	27090(30)	72630(30)	182(4)
C(17)	87950(30)	17540(30)	54260(30)	161(4)
C(18)	74650(30)	23280(30)	44680(30)	137(4)
C(19)	79630(30)	-1260(30)	17620(30)	200(4)

Table S5. Atomic coordinates ($x \ 10^5$) and equivalent isotropic displacement parameters (Å²x 10⁴) for alcohol 29. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S6. Bond lengths [Å] and angles [°] for alcohol 29.

O(1)-C(1)	1.233(2)
O(2)-H(2)	0.8400
O(2)-C(5)	1.428(2)
O(3)-C(18)	1.366(2)
O(3)-C(19)	1.431(2)

N(1)-C(1)	1.346(2)
N(1)-C(4)	1.464(3)
N(1)-C(13)	1.429(2)
C(1)-C(2)	1.535(2)
C(2)-C(3)	1.542(3)
C(2)-C(5)	1.560(2)
C(2)-C(12)	1.531(3)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(3)-C(4)	1.534(3)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-H(5)	1.0000
C(5)-C(6)	1.518(3)
C(6)-C(7)	1.395(3)
C(6)-C(11)	1.393(3)
C(7)-H(7)	0.9500
C(7)-C(8)	1.387(3)
C(8)-H(8)	0.9500
C(8)-C(9)	1.387(3)
C(9)-H(9)	0.9500
C(9)-C(10)	1.381(3)
C(10)-H(10)	0.9500
C(10)-C(11)	1.392(3)
C(11)-H(11)	0.9500
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-C(14)	1.387(3)
C(13)-C(18)	1.399(3)
C(14)-H(14)	0.9500
C(14)-C(15)	1.389(3)
C(15)-H(15)	0.9500
C(15)-C(16)	1.389(3)
C(16)-H(16)	0.9500
C(16)-C(17)	1.395(3)
C(17)-H(17)	0.9500
C(17)-C(18)	1.392(3)

C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(5)-O(2)-H(2)	109.5
C(18)-O(3)-C(19)	116.08(15)
C(1)-N(1)-C(4)	114.79(15)
C(1)-N(1)-C(13)	125.33(16)
C(13)-N(1)-C(4)	119.86(15)
O(1)-C(1)-N(1)	125.46(17)
O(1)-C(1)-C(2)	125.84(17)
N(1)-C(1)-C(2)	108.70(16)
C(1)-C(2)-C(3)	103.50(15)
C(1)-C(2)-C(5)	109.36(15)
C(3)-C(2)-C(5)	113.35(15)
C(12)-C(2)-C(1)	109.59(15)
C(12)-C(2)-C(3)	112.58(16)
C(12)-C(2)-C(5)	108.32(15)
C(2)-C(3)-H(3A)	110.6
C(2)-C(3)-H(3B)	110.6
H(3A)-C(3)-H(3B)	108.7
C(4)-C(3)-C(2)	105.91(16)
C(4)-C(3)-H(3A)	110.6
C(4)-C(3)-H(3B)	110.6
N(1)-C(4)-C(3)	103.61(15)
N(1)-C(4)-H(4A)	111.0
N(1)-C(4)-H(4B)	111.0
C(3)-C(4)-H(4A)	111.0
C(3)-C(4)-H(4B)	111.0
H(4A)-C(4)-H(4B)	109.0
O(2)-C(5)-C(2)	109.80(15)
O(2)-C(5)-H(5)	106.3
O(2)-C(5)-C(6)	112.56(15)
C(2)-C(5)-H(5)	106.3
C(6)-C(5)-C(2)	115.08(15)
C(6)-C(5)-H(5)	106.2
C(7)-C(6)-C(5)	122.89(17)
C(11)-C(6)-C(5)	118.50(17)

C(11)-C(6)-C(7)	118.62(18)
C(6)-C(7)-H(7)	119.9
C(8)-C(7)-C(6)	120.27(19)
C(8)-C(7)-H(7)	119.9
C(7)-C(8)-H(8)	119.7
C(9)-C(8)-C(7)	120.58(19)
C(9)-C(8)-H(8)	119.7
C(8)-C(9)-H(9)	120.2
C(10)-C(9)-C(8)	119.66(19)
C(10)-C(9)-H(9)	120.2
C(9)-C(10)-H(10)	120.0
C(9)-C(10)-C(11)	119.95(19)
С(11)-С(10)-Н(10)	120.0
C(6)-C(11)-H(11)	119.6
C(10)-C(11)-C(6)	120.86(19)
С(10)-С(11)-Н(11)	119.6
C(2)-C(12)-H(12A)	109.5
C(2)-C(12)-H(12B)	109.5
C(2)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(14)-C(13)-N(1)	120.58(17)
C(14)-C(13)-C(18)	120.32(17)
C(18)-C(13)-N(1)	118.87(16)
C(13)-C(14)-H(14)	119.8
C(13)-C(14)-C(15)	120.44(18)
C(15)-C(14)-H(14)	119.8
C(14)-C(15)-H(15)	120.4
C(14)-C(15)-C(16)	119.17(18)
C(16)-C(15)-H(15)	120.4
C(15)-C(16)-H(16)	119.5
C(15)-C(16)-C(17)	121.02(18)
C(17)-C(16)-H(16)	119.5
С(16)-С(17)-Н(17)	120.3
C(18)-C(17)-C(16)	119.50(18)
C(19) $C(17)$ $H(17)$	
$C(10)-C(17)-\Pi(17)$	120.3

O(3)-C(18)-C(17)	124.81(17)
C(17)-C(18)-C(13)	119.55(17)
O(3)-C(19)-H(19A)	109.5
O(3)-C(19)-H(19B)	109.5
O(3)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table S7. Anisotropic displacement parameters (Å²x 10⁴) for alcohol 29. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
0(1)	106(7)	218(7)	248(7)	132(6)	28(5)	16(6)
O(2)	130(7)	229(7)	210(7)	120(6)	18(5)	76(6)
O(3)	184(7)	178(7)	158(6)	52(5)	5(5)	89(6)
N(1)	89(7)	155(8)	196(8)	97(6)	23(6)	25(6)
C(1)	123(9)	120(9)	139(8)	51(7)	40(7)	47(7)
C(2)	113(9)	141(9)	163(9)	70(7)	16(7)	29(7)
C(3)	110(9)	131(9)	205(10)	66(7)	9(7)	7(7)
C(4)	107(9)	160(9)	229(10)	98(8)	41(7)	15(8)
C(5)	98(9)	138(9)	174(9)	73(7)	9(7)	27(7)
C(6)	136(9)	118(9)	177(9)	64(7)	17(7)	54(8)
C(7)	142(10)	175(10)	192(9)	40(8)	29(7)	15(8)
C(8)	227(11)	187(10)	223(10)	67(8)	84(8)	56(9)
C(9)	294(12)	166(10)	145(9)	36(8)	13(8)	68(9)
C(10)	228(11)	152(10)	223(10)	68(8)	-73(8)	0(9)
C(11)	163(10)	168(10)	221(10)	94(8)	-4(8)	6(8)
C(12)	183(10)	188(10)	150(9)	55(8)	19(7)	44(8)
C(13)	103(9)	154(10)	190(10)	102(8)	19(7)	18(8)
C(14)	173(10)	187(10)	194(10)	82(8)	49(8)	33(8)
C(15)	210(11)	255(11)	164(9)	98(8)	3(8)	-9(9)
C(16)	139(10)	219(10)	227(10)	143(8)	-35(8)	-3(8)
C(17)	106(9)	172(10)	235(10)	113(8)	15(7)	15(8)

C(18)	106(9)	158(9)	169(9)	90(7)	15(7)	0(8)
C(19)	195(10)	163(10)	230(10)	42(8)	10(8)	98(8)

Table S8. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10^3$) for alcohol 29.

	Х	У	Z	U(eq)
H(2)	-19	7232	3229	26
H(3A)	633	4460	3127	18
H(3B)	1722	2930	1646	18
H(4A)	2314	4088	5369	19
H(4B)	2796	2153	3877	19
H(5)	3781	8520	3378	16
H(7)	149	6867	5793	22
H(8)	433	7813	8869	25
H(9)	3203	9854	10568	25
H(10)	5696	10966	9178	25
H(11)	5493	9921	6087	22
H(12A)	4660	6332	653	26
H(12B)	2373	5438	131	26
H(12C)	4042	4116	50	26
H(14)	6107	5828	7781	22
H(15)	8346	4872	9400	25
H(16)	10013	2314	7917	22
H(17)	9484	720	4834	19
H(19A)	7520	-631	495	30
H(19B)	7626	-1091	2242	30
H(19C)	9407	250	1920	30

Table S9. Torsion angles [°] for alcohol 29.

O(1)-C(1)-C(2)-C(3)	167.47(18)
O(1)-C(1)-C(2)-C(5)	-71.4(2)
O(1)-C(1)-C(2)-C(12)	47.2(2)
O(2)-C(5)-C(6)-C(7)	46.8(2)
O(2)-C(5)-C(6)-C(11)	-132.75(18)
N(1)-C(1)-C(2)-C(3)	-12.53(18)
-------------------------	-------------
N(1)-C(1)-C(2)-C(5)	108.57(17)
N(1)-C(1)-C(2)-C(12)	-132.83(16)
N(1)-C(13)-C(14)-C(15)	175.12(18)
N(1)-C(13)-C(18)-O(3)	3.4(3)
N(1)-C(13)-C(18)-C(17)	-175.27(17)
C(1)-N(1)-C(4)-C(3)	10.2(2)
C(1)-N(1)-C(13)-C(14)	98.1(2)
C(1)-N(1)-C(13)-C(18)	-87.4(2)
C(1)-C(2)-C(3)-C(4)	18.19(18)
C(1)-C(2)-C(5)-O(2)	-178.29(14)
C(1)-C(2)-C(5)-C(6)	-50.1(2)
C(2)-C(3)-C(4)-N(1)	-17.37(19)
C(2)-C(5)-C(6)-C(7)	-80.1(2)
C(2)-C(5)-C(6)-C(11)	100.4(2)
C(3)-C(2)-C(5)-O(2)	-63.4(2)
C(3)-C(2)-C(5)-C(6)	64.8(2)
C(4)-N(1)-C(1)-O(1)	-178.47(18)
C(4)-N(1)-C(1)-C(2)	1.5(2)
C(4)-N(1)-C(13)-C(14)	-83.8(2)
C(4)-N(1)-C(13)-C(18)	90.7(2)
C(5)-C(2)-C(3)-C(4)	-100.17(17)
C(5)-C(6)-C(7)-C(8)	177.85(18)
C(5)-C(6)-C(11)-C(10)	-179.30(18)
C(6)-C(7)-C(8)-C(9)	2.0(3)
C(7)-C(6)-C(11)-C(10)	1.1(3)
C(7)-C(8)-C(9)-C(10)	0.3(3)
C(8)-C(9)-C(10)-C(11)	-1.8(3)
C(9)-C(10)-C(11)-C(6)	1.0(3)
C(11)-C(6)-C(7)-C(8)	-2.6(3)
C(12)-C(2)-C(3)-C(4)	136.44(16)
C(12)-C(2)-C(5)-O(2)	62.3(2)
C(12)-C(2)-C(5)-C(6)	-169.46(16)
C(13)-N(1)-C(1)-O(1)	-0.3(3)
C(13)-N(1)-C(1)-C(2)	179.70(16)
C(13)-N(1)-C(4)-C(3)	-168.05(16)
C(13)-C(14)-C(15)-C(16)	-0.4(3)
C(14)-C(13)-C(18)-O(3)	177.95(17)

C(14)-C(13)-C(18)-C(17)	-0.7(3)
C(14)-C(15)-C(16)-C(17)	0.2(3)
C(15)-C(16)-C(17)-C(18)	-0.2(3)
C(16)-C(17)-C(18)-O(3)	-178.03(19)
C(16)-C(17)-C(18)-C(13)	0.5(3)
C(18)-C(13)-C(14)-C(15)	0.6(3)
C(19)-O(3)-C(18)-C(13)	-178.57(17)
C(19)-O(3)-C(18)-C(17)	0.0(3)

Symmetry transformations used to generate equivalent atoms: