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Rapid access to enantioenriched spirocycles possessing a 1,4-dicarbonyl moiety spanning an all-

carbon quaternary stereogenic spirocenter was achieved using a masked bromomethyl vinyl 

ketone reagent. The developed protocol entails an enantioselective palladium-catalyzed allylic 

alkylation reaction followed by a one-pot unmasking/RCM sequence that provides access to the 

spirocyclic compounds in good yields and selectivities. 
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The widespread prevalence of spirocycles in biologically 

active molecules has inspired the development of many methods 

for the synthesis
1
 and, more recently, the enantioselective 

synthesis
2
 of this motif. During the course of our ongoing efforts 

in natural product synthesis, the preparation of an 

enantioenriched spirocyclic cyclohexenone derivative bearing 
both an all-carbon quaternary stereogenic spirocenter as well as a 

1,4-dicarbonyl moiety spanning the spirocenter was required. 

This goal was challenging not only due to the difficulties in 

constructing 1,4-dicarbonyls,
3
 but also due to the inherent 

challenges of enantioselectively synthesizing an all-carbon 

quaternary stereocenter.
4
 As the enantioselective synthesis of all-

carbon quaternary stereocenters via palladium-catalyzed allylic 

alkylation has been developed extensively by our group,
5
 we 

envisioned that rapid entry to the spirocyclic cyclohexenone 

framework could be achieved if the olefin was disconnected via a 

ring-closing metathesis reaction (RCM) and the resultant α-

quaternary carbonyl derivative could be synthesized 
asymmetrically via our allylic alkylation methodology (Figure 

1a). In addition to the application to our own synthetic endeavor, 

we imagined that this strategy would be amenable to the 

synthesis of a wide array of all-carbon quaternary spirocyclic 

compounds, such as acorenone, laurencenone B, and α-

chamigrene (Figure 1b).
6
 However, this plan hinged on the 

challenging use of bromomethyl vinyl ketone as an alkylating 

reagent. 

 

Figure 1. Strategy and inspiration for the catalytic enantioselective 

synthesis of all-carbon quaternary spirocycles. 

Nucleophilic addition to bromomethyl vinyl ketone can be 

problematic due to the three electrophilic positions on the 

molecule, which include positions for Michael addition, 1,2-

addition, and SN2 displacement (Figure 1c, left). As a solution to 

this issue, Funk has developed the use of 6-(bromomethyl)-4H-

1,3-dioxin as a bromomethyl vinyl ketone surrogate (Figure 1c, 
left).

7
 Following alkylation, the dioxin functionality of this 

reagent can be unmasked under thermal conditions to release 

formaldehyde and reveal the latent enone. Therefore, we 

envisioned that we could obviate the challenges of using 

bromomethyl vinyl ketone by utilizing Funk’s dioxin reagent in 

our planned strategy (Figure 1c, right). However, the use of a 
substrate bearing such a bulky substituent with Lewis basic 

oxygens had not yet been explored in our palladium-catalyzed 

allylic alkylation chemistry. 

Fortuitously, we rapidly discovered that the standard 

conditions developed by our group for palladium-catalyzed 

allylic alkylation reactions were adaptable to this new substrate 

class (Table 1). The use of a catalyst prepared from Pd2(pmdba)3 

and (S)-(CF3)3-t-Bu-PHOX (L1) provided access to a variety of 

dioxin-substituted allylic alkylation products in consistently high 
yields and enantioselectivities. Cyclohexanone 2a was obtained 

in 91% yield and 83% ee. Moreover, tetralone 2b was afforded in 

similarly high yield and selectivity, and we were pleased to find 

that lactam 2c could be accessed in an excellent 95% yield and 

99% ee. Based on these results in combination with the 

previously established trends in our palladium-catalyzed allylic 
alkylation methodology,

5
 we infer that the masked methyl vinyl 

ketone substituent should be broadly applicable to all of the ring 

systems tolerated in this chemistry. 

Table 1. Enantioselective Palladium-Catalyzed Allylic Alkylations 

with Substrates Bearing a Masked Methyl Vinyl Ketone.a 

 

a
 Reactions performed on 0.2 mmol scale. 

b
 Performed using THF at 23 °C. 

c
 

Performed using toluene at 40 °C. 
d
 Isolated yield. 

e
 Determined by chiral 

HPLC or SFC. 

With the feasibility of utilizing substrates bearing a masked 

methyl vinyl ketone functionality in our allylic alkylation 

chemistry established, we moved to demonstrate the ease with 
which this strategy can provide access to the desired spirocyclic 

compounds. Though the masked methyl vinyl ketone synthon has 

been shown to provide access to bridged and fused bicycle 

systems,
7
 to the best of our knowledge, the utility of this reagent 

for the synthesis of spirocycles has yet to be demonstrated. We 

were pleased to find that the planned thermal unmasking/RCM 
sequence proceeded smoothly in a single reaction vessel. In this 

procedure, dioxin 2 is unmasked via heating in toluene at 180 °C 

for one hour, whereupon the reaction is cooled to 60 °C and a 

solution of Hoveyda-Grubbs second-generation catalyst is 

introduced to complete the annulation. Using this newly 

developed protocol, spirocyclic cyclohexenones 3a, 3b, and 3c 
were obtained in good to excellent yields, thus demonstrating the 

viability of this strategy for the synthesis of enantioenriched 

spirocycles.  
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Table 2. One-Pot Synthesis of Spirocyclic Compounds.a 

 

a
 Reactions performed on 0.1 mmol scale. 

b
 Isolated yield. 

In summary, we have demonstrated that substrates bearing a 

bulky, highly oxygenated methyl vinyl ketone surrogate can be 

utilized in an enantioselective palladium-catalyzed allylic 

alkylation reaction. The resulting allylic alkylation products are 
obtained in high yields and selectivities with neither the 

increased sterics nor the added Lewis basic oxygen atoms 

adversely affecting reactivity. Furthermore, we developed a one-

pot unmasking/RCM procedure showcasing that these allylic 

alkylation products can be easily advanced to enantioenriched 

spirocycles bearing both an all-carbon quaternary stereogenic 
spirocenter as well as a 1,4-dicarbonyl functionality spanning the 

spirocenter. This simple two-step strategy is amenable to the 

synthesis of a range of enantioenriched spirocyclic natural 

products; further results in this area will be reported in due 

course. 
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moiety spanning an all-carbon quaternary stereogenic spirocenter was 

achieved using a masked bromomethyl vinyl ketone reagent. The 

developed protocol entails an enantioselective palladium-catalyzed 

allylic alkylation reaction followed by a one-pot unmasking/RCM 

sequence that provides access to the spirocyclic compounds in good 

yields and selectivities. 

 
 

 

 

 

 

 

 

 
 


