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Gas-phase autoxidation—regenerative peroxy radical formation fol-
lowing intramolecular hydrogen shifts—is known to be important in
the combustion of organic materials. The relevance of this chemistry
in the oxidation of organics in the atmosphere has received less at-
tention due, in part, to the lack of kinetic data at relevant tempera-
tures. Here, we combine computational and experimental approaches
to investigate the rate of autoxidation for organic peroxy radicals
(RO2) produced in the oxidation of a prototypical atmospheric pollut-
ant, n-hexane. We find that the reaction rate depends critically on
the molecular configuration of the RO2 radical undergoing hydrogen
transfer (H-shift). RO2 H-shift rate coefficients via transition states
involving six- and seven-membered rings (1,5 and 1,6 H-shifts, respec-
tively) of α-OH hydrogens (HOC-H) formed in this system are of order
0.1 s−1 at 296 K, while the 1,4 H-shift is calculated to be orders of
magnitude slower. Consistent with H-shift reactions over a substan-
tial energetic barrier, we find that the rate coefficients of these reac-
tions increase rapidly with temperature and exhibit a large, primary,
kinetic isotope effect. The observed H-shift rate coefficients are suf-
ficiently fast that, as a result of ongoing NOx emission reductions,
autoxidation is now competing with bimolecular chemistry even in
the most polluted North American cities, particularly during summer
afternoons when NO levels are low and temperatures are elevated.
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The gas-phase oxidation of organic compounds in the atmo-
sphere proceeds through a number of reactive pathways. It is

well established that reactions are initiated by oxidants including
OH, NO3, and O3, and that, in the presence of oxygen, organic
peroxy radicals (RO2) are usually formed (1). The subsequent
chemistry of RO2 is diverse and depends on the chemical state of
the atmosphere. Traditionally, bimolecular reaction with NO, HO2,
or other RO2 has been assumed to dominate the fate of these
radicals. Gas-phase autoxidation previously received significant at-
tention only in combustion chemistry where high temperatures
promote the process by permitting the reactants to overcome
sizeable energetic barriers. The critical reaction in autoxidation,
which generally governs the overall kinetics, is an intramolecular
hydrogen shift to the RO2. This reaction produces hydroperoxyalkyl
radicals (often denoted QOOH), which are known intermediates in
autoignition (2, 3). QOOH have only recently been observed (4).
While several studies conducted at elevated temperatures have
suggested that autoxidation is important in tropospheric chemistry
(5–9), experimental kinetic measurements at atmospherically rele-
vant temperatures have been lacking.
Several studies now report the atmospheric significance of

RO2 H-shift chemistry (10–24). Crounse et al. (15) suggested
that this mechanism may explain the rapid oxygenation of hy-
drocarbons that contribute to particle growth. Subsequently,
autoxidation was implicated in the generation of low-volatility
molecules resulting from a single addition of OH or O3 to mono-
terpenes (25–30). In these systems, autoxidation reactions proceed
through successive isomerizations and O2 additions, resulting in the
formation of molecules with high O/C ratios and, often, multiple

hydroperoxide groups (31). Such compounds have recently been
observed to undergo gas–particle transfer (32) and have been
shown to be important in particle nucleation (33–50).
While appreciation for the importance of autoxidation is in-

creasing, significant shortcomings exist that preclude adequate
characterization of its impact. Research to date has failed to fully
describe the autoxidation mechanism of monoterpenes. Attempts
have been made to explore autoxidation using cyclohexene as a
model system (51, 52). Even in such simplified systems, however,
multiple QOOH are formed, each of which can proceed through a
large number of possible pathways to produce closed-shell prod-
ucts. Thus, elucidation of the mechanisms has proved challenging.
Here, we use both experimental and computational methods

to determine the room temperature rate constants for autoxi-
dation in a simple system—peroxy radicals produced via photo-
oxidation of n-hexane in the presence of NO. The existence of an
autoxidation pathway in this system has previously been demon-
strated at elevated temperature (5). In the atmosphere, oxidation of
hexane by the hydroxyl radical (OH) in the presence of NO produces
alkoxy radicals, an example of which is shown in Scheme 1. Some
of these alkoxy radicals can isomerize and react with O2 to yield
hydroxyperoxy radicals. For simplicity, our experiments use
2-hexanol as the precursor to produce a suite of these hydroxy-
peroxy radicals. In urban regions, the expectation is that these RO2
react further with NO, ultimately producing hydroxy carbonyls, HO2,
and NO2. Autoxidation, on the other hand, competes with the sec-
ond NO reaction as shown in Scheme 1. In contrast to the mecha-
nism proposed to explain the highly oxidized products observed in

Significance

Unimolecular hydrogen shift reactions to peroxy radicals have
been shown to be important in the atmospheric photooxidation
of isoprene and α-pinene. These studies also report the efficient
generation of highly oxidized organic molecules known to
contribute to particle formation and growth. Here, we quantify
the rate of this oxidation pathway for peroxy radicals produced
in the oxidation of n-hexane under conditions relevant to the
atmosphere. The results suggest that autoxidation pathways
are competitive against bimolecular reactions for a broad range
of substrates, including many that result from urban emissions.
The formation of organic hydroperoxides from atmospheric
autoxidation has unknown implications for air quality.

Author contributions: J.D.C., H.G.K., and P.O.W. designed research; E.P., R.V.O., J.D.C., and
H.G.K. performed research; J.C.H., B.M.S., and P.O.W. contributed new reagents/analytic
tools; E.P., R.V.O., and J.D.C. analyzed data; and E.P., R.V.O., J.D.C., H.G.K., and P.O.W.
wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.
1To whom correspondence may be addressed. Email: wennberg@caltech.edu or hgk@
chem.ku.dk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1715540115/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1715540115 PNAS Early Edition | 1 of 6

EA
RT

H
,A

TM
O
SP

H
ER

IC
,

A
N
D
PL

A
N
ET

A
RY

SC
IE
N
CE

S

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1715540115&domain=pdf&date_stamp=2017-12-13
http://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:wennberg@caltech.edu
mailto:hgk@chem.ku.dk
mailto:hgk@chem.ku.dk
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715540115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715540115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1715540115


the OH and O3 initiated oxidation of monoterpenes (25–30), the RO2
in the hexane system primarily proceed through only a single H-shift
yielding QOOH, which react with O2 to produce ketohydroperoxides
and HO2. This simplification enables unambiguous experimental
constraints for the specific RO2 H-shift rate coefficients.

Results and Discussion
Computational Approach. We calculate the rate constants of the
H-shift reactions using multiconformer transition state theory
(MC-TST) (53–56). The MC-TST expression for a rate constant
is given by the following:

kMC-TST = κ
kBT
h

Pall  TS  conf   .
i exp

�
−ΔEi
kBT

�
QTS,iPall R  conf.

j exp
�
−ΔEj

kBT

�
QR,j

exp
�
−
ETS,0 −ER,0

kBT

�
,

where kB is the Boltzmann constant, h is Planck’s constant, T is
the temperature, QTS,i is the partition function for the ith tran-
sition state (TS) conformer, and ΔEi is the difference in zero-
point corrected energy between the ith TS conformer and the
lowest energy TS conformer. ETS,0 is the zero-point corrected energy
of the lowest energy TS conformer. The analogous symbols apply for
the reactant conformers. κ is the tunneling correction factor. Here,
we use the 1D Eckart tunneling approximation, which takes the
forward and reverse barrier height and the imaginary frequency
of the TS as input (57). The partition functions, energies, barrier

heights, and imaginary frequencies needed to calculate kMC-TST are
obtained following the approach described by Møller et al. (56).
Briefly, ωB97X-D/aug-cc-pVTZ was used for the geometries,
frequencies, partition functions, zero-point energy corrections,
and relative energies between unique conformers. The confor-
mers were located by a systematic conformer search using mo-
lecular mechanics methods (58–60). CCSD(T)-F12a/VDZ-F12
single-point energy calculations were performed for more accu-
rate electronic energies in the barrier heights (61–65). See SI
Appendix for a detailed description.

Experimental Approach. The RO2 studied in this work were pre-
pared via oxidation of 2-hexanol by OH (Scheme 2) in a ∼1-m3

environmental chamber made of Teflon. To determine the rate
constants of the H-shifts, we studied the competition between
bimolecular and unimolecular chemistry in a suite of experi-
ments with differing concentrations of NO and HO2, thereby
producing a range of RO2 bimolecular lifetimes ðτbimolecularÞ :

τbimolecular =
1

kRO2+NO½NO�+ kRO2+HO2½HO2�.

Determination of the concentrations of NO and HO2 in our
experiments is described in SI Appendix. The rate constants
(kRO2+NO and kRO2+HO2) are taken from the literature (66) and
described further in SI Appendix. We assume the ratio of the rate
constants ðkRO2+NO=kRO2+HO2Þ is isomer independent.
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Scheme 1. The mechanism to produce the 2,5 RO2 (orange box) from n-hexane in the atmosphere is shown. This RO2 reacts with NO to produce a hydroxy
ketone (RONO2, as shown in Scheme 3, are also produced in a minor channel). Competing with this chemistry is a unimolecular 1,6 RO2 H-shift (autoxidation),
which produces a ketohydroperoxide and HO2, after further reaction with O2. The first-order rate constants are provided at 300 K and 1 atm of pressure.
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Scheme 2. We oxidize 2-hexanol with OH in air to produce a suite of RO2

radicals including the 2,5 RO2 (orange box) shown in Scheme 1.
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Fig. 1. A chromatogram of five first-generation organonitrate (RONO2)
isomers formed in the OH oxidation of 2-hexanol. We measure the isomer
distribution relative to the 2,3 isomer at different bimolecular lifetimes
(τbimolecular). Loss of the 2,4 and 2,5 RONO2 is evident in the experiment at
τbimolecular ∼ 4 s (black) compared with the experiment at τbimolecular < 0.03 s
(red). Details on structural assignment can be found in SI Appendix.
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We use measurements of the organonitrates (RONO2), pro-
duced as minor products in the RO2 + NO channel, to probe the
bimolecular chemistry. Following oxidation, the RONO2 isomers
were separated by gas chromatography and detected with chemical
ionization mass spectrometry (GC-CIMS) using CF3O

− (m/z = 85) as
a reagent ion (Fig. 1). GC-CIMS has been documented extensively
(14, 15, 24, 67–70). A deconvolution algorithm described in SI
Appendix was required to analyze the chromatograms as it was
not possible to increase the column length to fully separate the
RONO2 isomers without suffering significant isomer-specific
transmission losses. Quantification became more difficult (with
resulting higher uncertainty) for experiments at elevated tem-
perature and/or long bimolecular lifetimes due to the higher water
vapor concentration (∼300 ppmv) that results from diffusion of
water through the Teflon chamber walls.
The H-shifts from the 2,3 RO2 are calculated to be orders of

magnitude slower than bimolecular chemistry for all experiments
reported here (Table 1 and SI Appendix, Table S5). We therefore
assume that τ2,3 RO2 = τbimolecular. For the 2,4 and 2,5 RO2 iso-
mers, however, we find that the amount of time available to react
with NO is shortened by unimolecular chemistry:

τRO2 =
1

kRO2+NO½NO�+ kRO2+HO2½HO2�+ kunimolecular
.

As a result, the yields of the 2,4 and 2,5 RONO2 relative to that
of the 2,3 RONO2 serve as a sensitive probe of unimolecular
chemistry. A depiction of the method is shown in Scheme 3.

H-Shift Rate Coefficients. As shown in Fig. 2, the observed ratio of
the 2,4 and 2,5 RONO2 to the 2,3 RONO2 decreases as bi-
molecular lifetimes extend beyond 1 s. At 296 K, the equivalence
point in the ratio of the 2,4 and 2,5 RONO2 relative to the 2,3
RONO2 observed at τbimolecular ≈ 10  s is consistent with unimolecular
chemistry occurring at a rate of ∼0.1 s−1.
Consistent with a large energetic barrier encountered along the

H-shift reaction coordinate, the falloff occurs at a shorter bi-
molecular lifetime at elevated temperature (71) (Table 1 and SI
Appendix). Providing further evidence for our assignment of the
mechanism, the falloff occurs at a bimolecular lifetime more than
20 times greater when deuterium is substituted α to the OH group
(HOC-D; SI Appendix). This is consistent with the expected pri-
mary kinetic isotope effect for RO2 H-shifts (25, 52, 72).

In Fig. 2, comparisons are shown between the measurements
and a model using the calculated rate coefficients for the H-shift
reactions (Table 1). The 1,4 H-shift from the 2,3 isomer is cal-
culated to be very slow (<10−4 s−1 at T = 296 K) and, as dis-
cussed in SI Appendix, a 1,5 H-shift from this isomer was
considered but is also expected to be slow. In contrast, the cal-
culated rate coefficients of the 1,5 and 1,6 H-shifts from the
2,4 and 2,5 RO2 are orders of magnitude faster. Surprisingly, the
calculated H-shift rate coefficients of the S,S and S,R isomers of
the 2,5 RO2 differ significantly. As seen in Fig. 3, the origin of
this difference is a change in the hydrogen bond-like interaction
between the hydroxy group and the carbon-bonded oxygen atom
of the peroxy radical moiety between the reactant and the TS
in the S,R diastereomer. This produces a ∼1 kcal/mol difference
in barrier height and enhances the rate constant of the S,R

Table 1. H-shift rate coefficients (seconds−1) and factors derived from theory and experiment

*For the temperature-dependent rate expressions, refer to SI Appendix. Uncertainty in the calculated rate coefficients is estimated to
be less than a factor of 10.
†Reported values are scaling factors that afford the best fit to the experimental data, assuming a fixed ratio between the calculated
diastereomer rate constants and an initial racemic mixture of isomers. Uncertainty is estimated as described in SI Appendix.
The experiments are unable to differentiate the S,R and S,S isomers.
‡Data for 318 K are available in SI Appendix.
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Scheme 3. Peroxy radicals produced in the reaction of OH with 2-hexanol
produce organonitrates (RONO2, blue boxes) after reaction with NO, in a
branching ratio measured here to be ∼25% at 296 K. Reaction with HO2

produces hydroperoxides (ROOH). In competition with bimolecular chemistry,
the 2,4 RO2 undergoes a unimolecular H-shift to produce QOOH. By mea-
suring the changing yield of the 2,4 and 2,5 RONO2 isomers relative to that of
the 2,3 RONO2, an isomer that isomerizes negligibly under the conditions of
these experiments, we experimentally constrain the H-shift rate constant. The
chemistry of the 2,5 RO2 radical (not shown) parallels that of the 2,4 isomer.

Praske et al. PNAS Early Edition | 3 of 6

EA
RT

H
,A

TM
O
SP

H
ER

IC
,

A
N
D
PL

A
N
ET

A
RY

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715540115/-/DCSupplemental/pnas.1715540115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715540115/-/DCSupplemental/pnas.1715540115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715540115/-/DCSupplemental/pnas.1715540115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715540115/-/DCSupplemental/pnas.1715540115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715540115/-/DCSupplemental/pnas.1715540115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715540115/-/DCSupplemental/pnas.1715540115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715540115/-/DCSupplemental/pnas.1715540115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715540115/-/DCSupplemental/pnas.1715540115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715540115/-/DCSupplemental/pnas.1715540115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715540115/-/DCSupplemental/pnas.1715540115.sapp.pdf


diastereomer by a factor of ∼5. However, illustrating the diffi-
culty in generalizing such behavior, opposing effects related to
the barrier height, partition functions, and tunneling result in
similar calculated rate coefficients for the 1,5 H-shift from S,R
and S,S isomers of the 2,4 RO2 (SI Appendix).
In the model used in Fig. 2 (solid red line), we assume that a

racemic mixture is produced when O2 adds to the alkyl radical and
that the rate coefficients of RO2 H-shifts for enantiomeric pairs
are identical (Table 1). Simulations where the peroxy radicals are
either entirely (R,R; S,S) or (R,S; S,R) are shown as dashed lines.
The experimental factors in Table 1 are the multiplicative

scaling of the calculated rate constants required to best fit the
experimental data (SI Appendix, Figs. S8–S10). For instance, a
factor of 1.0 would indicate that a best fit was achieved without
scaling the calculated rate constants. The best fit to the experimental
data at 296 K require scaling of the calculated values by less than
a factor of 3 for both the 1,5 and 1,6 H-shifts, well within the
combined uncertainties. The reasonable agreement between the
experimental and computational results for these H-shifts sug-
gests that the computational approach used here, and described
fully by Møller et al. (56), provides an efficient method appli-
cable to a much broader range of substrates than can plausibly be
investigated in the laboratory.

Autoxidation Products. We observe a CIMS signal at m/z 217 (a
cluster of CF3O

− with a compound of molecular weight 132 amu),
corresponding to the mass of expected autoxidation products,
ketohydroperoxides. We assign this signal to the two RO2 α-OH H-
shift reactions shown in Scheme 4. Consistent with an autoxidation
mechanism, the absolute yield of m/z 217 ðΔm=z  217=Δ2-hexanolÞ
at similar bimolecular lifetimes increases with temperature.
An additional signal at m/z 233 (m/z 234 with D substitution)

was observed, consistent with formation of a hydroxy ketohy-
droperoxide that arises from the 2,5 RO2 through successive
isomerizations as indicated in Scheme 4. The formation of this
compound was enhanced by deuterium substitution at the α-OH

center, which slows the 1,6 H-shift channel. The signal is much
smaller in the nondeuterated experiments as the 1,6 H-shift
outruns this chemistry. See SI Appendix for further details.
Similar ketohydroperoxides were previously detected in the low

NO oxidation of C12 alkanes (73–75). Although autoxidation was
not discussed, second-generation alkoxy radicals form hydroxyperoxy
radicals that almost certainly undergo H-shifts at rates comparable to
those reported here. The ketohydroperoxides were observed to
partition to the particle phase with simultaneous conversion
to peroxyhemiacetals. Additionally, a cyclization pathway from
γ-ketohydroperoxides to form endoperoxides was suggested,
and is similar to a pathway discussed in SI Appendix and observed
elsewhere (9, 76).

Atmospheric Implications. In the atmosphere, the bimolecular
lifetimes of peroxy radicals typically range from 1 s to more than
100 s. The lowest radical abundances (and therefore long bi-
molecular RO2 lifetimes) are characteristic of attenuated UV
environments (e.g., at night or in shaded regions below thick
cloud or tree canopies) or regions remote from anthropogenic
NOx emissions. Due to emission reductions from power gener-
ation and transportation, however, NOx levels are declining
rapidly across North America, reaching levels unprecedented
in the past several decades (77, 78). The 2013 SENEX and
SEAC4RS aircraft campaigns, for example, sampled large swaths
of the southeastern United States including areas significantly
influenced by urban emissions. NO mixing ratios were often
<100 pptv and nearly always <1 ppbv (79, 80). Even more im-
pressive, NOx levels in Pasadena, California, declined by more
than a factor of 2 between 2010 and 2017 (81). In August 2017,
we measured [NO] below 500 pptv on several weekend after-
noons, corresponding to RO2 lifetimes longer than 10 s. With
afternoon temperatures typically exceeding 305 K, the autoxi-
dation chemistry described here is now competing with reactions
between peroxy radicals and NO in the middle of one of North
America’s most polluted cities.
While the rate of autoxidation is highly dependent on the

substrate, this chemistry is undoubtedly important for many of
the organic compounds emitted into the urban atmosphere. A
recent review of vehicle emissions and urban aerosol formation
speculated that autoxidation might play a role in the degradation
of certain unsaturated compounds (82), but its role in alkane
oxidation was not appreciated. Alkanes constitute a substantial
fraction of urban nonmethane hydrocarbon emissions (83–87),
and n-alkanes with greater than five carbons are known emissions
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conformers of the reactant and TS. The S,R diastereomer of the 2,5 RO2

exhibits a hydrogen bond-like interaction which stabilizes the TS. Conse-
quently, the H-shift rate of this isomer is enhanced by a factor of ∼5. Green
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from gasoline- and diesel-powered vehicles arising from both
incomplete combustion and fuel evaporation (88, 89). These
compounds will undergo oxidation pathways that are nearly
identical to those reported here for n-hexane.
The importance of organic hydroperoxide formation via autoxi-

dation will depend on the fate and toxicity of these compounds.
Peroxides are reactive oxygen species that are known to produce
oxidative stress in plants and animals (90–92). Additionally, the rate
of oxidant (e.g., ozone) and aerosol formation is almost certainly
sensitive to autoxidation. Because autoxidation leads to the deg-
radation of volatile organic compounds without converting NO to
NO2, ozone formation may be slower when this chemistry is im-
portant. While the impact on aerosol formation is less clear, it is
likely to be enhanced because autoxidation adds oxygen with mini-
mal fragmentation. For example, Zhao et al. (93) recently showed
that while NOx emissions are lower with the latest vehicle emissions
control technology, the organic aerosol yield is greater than from the
emissions using older-generation technology. Although the authors
do not provide a mechanistic explanation, the higher yields are likely
attributable, in part, to hydroperoxide formation via an autoxidation
mechanism.

As a result of highly successful policies to reduce emissions of
NOx, our results suggest that autoxidation is now becoming
an important pathway for urban photochemistry across North
America. However, the photochemical models that have been
used to inform these policies have little if any validation in the
low-NO regimes we are now experiencing. Thus, there is a risk
that attainment of ozone compliance may occur at the expense of
other air quality goals because of more efficient hydroperoxide
and aerosol formation. It is thus imperative that our under-
standing of the low-NO chemistry for the suite of organic com-
pounds typically found in the atmosphere advance quickly and
that monitoring efforts to quantify low-NO processes, such as
autoxidation, be undertaken with haste.

Methods
The experimental apparatus, including the GC-CIMS technique, has been
previously described and is outlined in SI Appendix for these experiments (14,
15, 67–70). Experiments are performed in a ∼1-m3 Teflon environmental
chamber. In nearly all experiments, the precursor used was 2-hexanol, while
CH3ONO was used as a photolytic source of HO2 and NO (and thus OH). NO
was added before oxidation for experiments focusing on short RO2 lifetimes
and was quantified using a Teledyne 200EU chemiluminescence NOx ana-
lyzer. For experiments without additional NO added, we use established
methods to estimate its abundance (and that of HO2) as detailed in SI Ap-
pendix. We attempted to replicate the method of Jorand et al. (5) near room
temperature, but, for reasons described in SI Appendix, these experiments
were not successful.

Experimental Uncertainty. Considerable (>50%) experimental uncertainty
arises in our estimate of τbimolecular for τ> 10  s, due to imprecision in the in-
terpretation of chromatographic peaks, and temperature fluctuations in our
chamber. Details are provided in SI Appendix.

Computational Uncertainty. We estimate the uncertainty of the calculated
rate constants to be less than a factor of 10. The uncertainties arise primarily
from the barrier height, tunneling correction, and the partition functions.
Due to error cancelation, the ratio of the theoretical rate constants for these
different H-shifts are likely more accurate than the absolute rate coefficients.
This is especially true for reactions of the same or very similar molecules. See SI
Appendix for details.
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