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Phosphinooxazoline (PHOX) ligands, originally developed by Pfaltz, 

Helmchen, and Williams,2-4 comprise a privileged class of P,N type ligands 
with extensive applications in various transition-metal catalyzed processes, 
including allylic alkylations, Heck-type reactions, and catalytic 
hydrogenation.5,6 The PHOX ligand class is highly modular and has grown 
to encompass numerous structural variations, of which only a few major 
classes are shown in Figure 1. Every component of the ligand scaffold is 
modifiable as exemplified by R1 variations on the oxazoline ring (1, 2), 
substitution of the aryl rings with perfluoroalkyl groups (2) or ferrocenyl 
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systems (3), and various alkyl and spirocyclic7 linkers joining the oxazoline 
ring to the phosphine backbone (4a-b).6 

 
Figure 1. Phosphinooxazoline (PHOX) ligands are highly modular 

 
The substituted tri-aryl PHOX ligands 1 are of particular interest to our 

laboratory. Since our 2009 Organic Syntheses articles, which described an 
optimized route to the valuable PHOX ligand (S)-t-BuPHOX 1a and its use 
in a Pd-catalyzed decarboxylative allylic alkylation reaction toward the 
synthesis of (S)-2-allyl-2-methylcyclohexanone,8,9 electronic and steric 
modifications to the scaffold of 1a have found increasing traction in the 
literature.10-12 In particular, electron-deficient counterparts such as (S)-
(CF3)3-t-BuPHOX (5), (S)-(CF3)4-t-BuPHOX (6), and (S)-(CF3)4(F)-t-BuPHOX 
(7),  which contain trifluoromethyl groups at strategic positions on the aryl 
rings, have been uniquely effective and in many cases superior to 1a in 
various highly enantioselective metal-catalyzed reactions.13,14 These ligands 
may be synthesized through modified procedures based on our original 
Organic Syntheses article.8,10,13 This Discussion Addendum highlights recent 
 

 
Figure 2. Electron-deficient variants of (S)-t-BuPHOX 
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applications of 1a and its electron-deficient variants 5-7 in total synthesis 
and reaction development, with an emphasis on decarboxylative 
asymmetric allylic alkylation reactions.   

Aside from their common use in various asymmetric allylic allylation-
type reactions,15,16,17 PHOX ligands 1a and 5-7 have recently been utilized in 
diverse transformations including sigmatropic rearrangements,18 
hydroarylation reactions,19 carboaminations,20 asymmetric alkylations and 
protonations,21,22 and cascade reactions.23 The chemical motifs produced by 
these PHOX-catalyzed reactions are often found in biologically active small 
molecules and can also serve as synthetically valuable intermediates. For 
instance in 2012, Kozlowski presented a rare example of a catalytic 
enantioselective Saucy-Marbet Claisen rearrangement using 1a to effect the 
transformation of propargyl ethers 8 into allenyl oxindoles 9 (Scheme 1).18 
However, 1a was effective only for a subset of aryl-substituted alkyne 
substrates. 

 

 
Scheme 1. Synthesis of quaternary allenyl indoles using an 
enantioselective Saucy-Marbet Claisen rearrangement 

 
Later in 2015, 1a was also utilized by Wolfe in a Pd-catalyzed alkene 

carboamination reaction involving allylphenyltriflates 10 and aliphatic 
amines to generate chiral aminoindanes 11, a motif that appears in a variety 
of pharmacologically active molecules (Scheme 2).20 Interestingly, the 
crucial aminopalladation step consists of an intermolecular reaction.  

 

 
Scheme 2. Synthesis of aminoindanes via alkene carboamination 
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In 2017, Zhu used 1a and a stoichiometric amount of tetrahydroxy 
diboron-water as the hydride donor to effect an asymmetric intramolecular 
reductive Heck reaction of N-aryl acrylamides 12 to give 3,3-disubstituted 
oxindoles 13 (Scheme 3).19 Notably, the choice of ligand affected the reaction 
pathway: whereas PPh3 led to carboboration products, 1a gave the desired 
hydroarylation product 13.  

 
Scheme 3. Synthesis of quaternary oxindoles via asymmetric 

intramolecular reductive Heck reaction 
 
Recently, in an elegant extension of our work on asymmetric alkylation 

of 3-halooxindoles,24 Bisai and co-workers disclosed the use of a Cu-1a 
catalyst to effect malonate addition onto 3-hydroxy 3-indolyl-2-oxindoles 14 
(Scheme 4).21 It is thought that the copper catalyst facilitates a stereoablative 
elimination of water, followed by asymmetric addition of the malonate.  

 

 
Scheme 4. Synthesis of quaternary dimeric oxindoles by malonate 

addition onto 3-hydroxy-2-oxindoles  
 

Lam discovered that a Nickel-PHOX catalyst comprised of 1a or (S)-
PhPHOX effectively catalyzed the coupling of alkynyl malonate esters 16 
with arylboronic esters in a desymmetrizing arylative cyclization (Scheme 
5).23 The resulting cyclopentenone products 17 contain a synthetically 
challenging fully substituted olefin and a chiral quaternary center. 
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Scheme 5. Synthesis of chiral cyclopentenones via nickel-catalyzed 

desymmetrization of alkynyl malonate esters with arylboronic acids 
 

With regard to allylic alkylation-type reactions, 1a and its electron 
deficient counterparts 5-7 have found extensive applications: After our 
initial reports on asymmetric decarboxylative protonation,25,26 the Guiry 
group has continued to expand the scope and understanding of this 
reaction. In one example in 2017, they utilized (S)-(CF3)3-t-BuPHOX (5) to 
enable the enantioselective synthesis of tertiary α -arylated indanones 19 
(Scheme 6).27  
 

 
Scheme 6. Synthesis of chiral tertiary α -aryl indanones using 

decarboxylative protonation 
 
In 2017, Malcolmson introduced a method to synthesize chiral allylic 

amines 21 through the intermolecular addition of aliphatic amines to acyclic 
1,3-dienes 20 (Scheme 7).15 Here, the electron deficient PHOX ligand 6 was 
critical in achieving high regioselectivity for the desired 1,2-hydroamination 
product. 
 

 
Scheme 7. Synthesis of allylic amines via diene hydroamination 
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O

O

O

O

CF3F3C
R

Ar1

Ar2B(OH)2
Ni/(S)-PhPHOX or
(S)-t-BuPHOX (1a)

TFE, 80 °C Ar2

Ar1
O

CO2CH2CF3

R

1716

O
Ar

O

O
O

Ar
Pd/(S)-(CF3)3-t-BuPHOX (5)

Meldrum’s acid
THF, 40 °C          19

up to 94% ee
up to 95% yield

18

Ph + amine Ph Me

NR2Pd/(S)-(CF3)4-t-BuPHOX (6)

AgBF4, CH2Cl2, 22 °C20          21
up to 91% yield
up to 92% ee



 

Org. Synth. 2018, 95, 439-454                                                              DOI: 10.15227/orgsyn.095.0439                                                           444 

diastereoselectivity of this reaction was affected by the choice of solvent, 
with toluene and acetonitrile providing differing diastereomers.  

 

 
Scheme 8. Synthesis of tetrahydrofuroindoles via dearomative formal 

[3+2] cycloaddition of nitroindoles and epoxybutenes 
 

Along with the Trost laboratory and others, our group has pioneered 
the development of transition metal-catalyzed decarboxylative asymmetric 
allylic alkylation reactions to generate quaternary stereocenter-containing 
compounds. Following our initial efforts on cycloalkanone systems using 
(S)-t-BuPHOX,28,29 we have extended the reaction to a wide range of cyclic 
substrates important in pharmaceuticals and natural product synthesis 
(Table 1).30–35 This versatile methodology now enables the synthesis of chiral 
disubstituted carbocycles of ring size four to eight, “Mannich” adducts, and 
heterocycles. Especially in the case of lactam systems 29-36, the electron 
deficient ligand 5 was hypothesized to generate a more reactive palladium 
catalyst and was required to achieve high levels of asymmetry. 

 
 
 
 
 
 
 
 
 
 
 
 
 

N
Boc

NO2
O

RR
N
Boc

O2N

R O

R

Pd/(S)-(CF3)4(F)-t-BuPHOX (7)

Cs2CO3, PhMe
rt          24

up to 98% yield
up to 98% ee
up to 93/7 dr

+

22 23



 

Org. Synth. 2018, 95, 439-454                                                              DOI: 10.15227/orgsyn.095.0439                                                           445 

Table 1. Chiral α -disubstituted carbocycles and lactams accessible by 
decarboxylative allylic alkylation 

 

 
a(S)-t-BuPHOX (1a) instead of  (S)-(CF3)3-t-BuPHOX (5) 

 
Furthermore, in an effort to reduce catalyst loadings to facilitate 

industrial scale applications, we developed a low-catalyst loading method 
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(Scheme 9).36 With this protocol, catalyst loadings as low as 0.075 mol %, 
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Scheme 9. Low-palladium loading protocol for decarboxylative allylic 

alkylation 
 

Most recently in 2018, we extended the scope of decarboxylative allylic 
alkylation toward challenging acyclic substrates by reporting the first 
asymmetric decarboxylative alkylation of fully substituted acyclic enol 
carbonates to provide linear α -quaternary ketones 38, again employing 
electronic deficient PHOX ligand 5 (Scheme 10).37,38 Of particular interest, 
the same enantiomer of product was obtained with comparably high ee 
regardless of the E/Z ratio of the starting material, suggesting a possible 
dynamic kinetic enolate equilibration during the reaction. 

 

 
Scheme 10. Synthesis of acyclic α -quaternary ketones using 

decarboxylative alkylation 
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instance, in Takemoto’s 2014 synthesis of the tricyclic alkaloid (–)-
aurantioclavine (39), 1a was used in an intramolecular allylic amination of 
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(Scheme 11).39  
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Scheme 11. Total synthesis of (–)-aurantioclavine via allylic amination 

 
Similarly, in 2012 and 2014, we used a series of powerful allylic 

alkylations to intercept chiral gem-disubstituted cyclic intermediates 41, 44, 
and 47 en route to the formal syntheses of seven natural products including 
(–)-thujopsene (42), (–)-quinic acid (45), and (+)-rhazinilam (48) (Scheme 
12).33,40 
 

 
Scheme 12. Formal syntheses of diverse natural products via allylic 
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the hexacyclic caged indole alkaloid (–)-aspidofractinine (51), Shao used 1a 
in an enantioselective decarboxylative protonation reaction to forge C3-
monosubstitutions on medicinally important carbazolone heterocycles 50 
(Scheme 13).41 Later in 2017, Robinson and co-workers also used 1a in a 
decarboxylative protonation protocol to make α -substituted ketone 53, 
which was then divergently advanced toward the spirocyclic marine 
alkaloids (–)-fasicularin (54) and (–)-lepadiformine (55).42  

 

 
Scheme 13. Total syntheses of (–)-aspidofractinine, (–)-lepadiformine, 

and (–)-fasicularin using decarboxylative protonation 
 

Most of the remaining recent examples of PHOX ligands 1a and 5-7 in 
total synthesis have been found in the context of decarboxylative allylic 
alkylation toward the synthesis of indole alkaloid natural products (Scheme 
14).43 For example, vinylogous ether 56, prepared from a (S)-t-BuPHOX (1a)-
catalyzed allylic alkylation, can be advanced to (–)-aspidospermidine (57) in 
a formal total synthesis.40 Similarly, the familiar gem-disubstituted lactam 47 
serves as an intermediate in the formal syntheses of (+)-quebrachamine (60) 
and (–)-vincadifformine (61).40 In 2014, Mukai synthesized the pentacyclic 
indole (+)-kopsihainanine A (59) utilizing (S)-(CF3)3-t-BuPHOX (5) in a 
decarboxylative alkylation to generate lactam intermediate 58.44 Notably, 
(+)-kopsihainanine A was previously independently synthesized by both 
Shao and Lupton in 2013, who also also utilized decarboxylative alkylation 
to synthesize a structurally distinct carbazolone intermediate.45,46 In 2016,  
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Scheme 14. Decarboxylative allylic alkylation in the total synthesis of 

indole alkaloid natural products 
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limaspermidine (67), (+)-kopsihainanine (59), (–)-quebrachamine (68),  (+)-
aspidospermidine (69), and (-)-goniomitine (70).48,49 Most recently, Qin in 
2017 leveraged ligand 1a to synthesize the quaternary indole 71, paving the 
way to a divergent synthesis of five Kopsia indole alkaloids: (–)-fruticosine 
(72), (+)-methyl chanofruticosinate (73), (–)-isokopsine (74), (–)-kopsine (75), 
and (–)-kopsanone (76).50  

Finally, in 2018 Li and co-workers reported an asymmetric synthesis of 
the pentacyclic anti-tumor alkaloid (–)-cephalotaxine (79) using 
decarboxylative alkylation on allyl enol carbonate precursor 77.51 Here, they 
utilized ligand 5 to attain 78 with high enantioselectivity; in contrast, (S)-t-
BuPHOX (1a) provided the desired product in only 80% ee.  
 

 
Scheme 15. Total synthesis of (–)-cephalotaxine 

 
These aforementioned natural product syntheses highlight the 

impressive synthetic versatility of enantioselective allylic alkylation 
reactions facilitated by PHOX ligands. Especially in the cases of indole 
alkaloid syntheses, decarboxylative alkylation was used to synthesize a 
range of structurally diverse quaternary stereocenter-bearing intermediates, 
which were advanced toward the desired natural products. Additionally, 
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using decarboxylative asymmetric allylic alkylation methodologies. The 
PHOX ligand class has shown extensive versatility in various transition-
metal catalyzed asymmetric transformations, thus enabling access to novel 
and biologically important chemical space. Their modular nature ensures 
the continual development of new electronically and sterically modified 
versions with even greater catalytic potential.  
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