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Palladium-Catalyzed Construction of Quaternary Stereocenters 

by Enantioselective Arylation of -Lactams with Aryl Chlorides 

and Bromides 

Carina I. Jette[a], Irina Geibel[a], Shoshana Bachman[a], Masaki Hayashi[a], Shunya Sakurai[a], Hideki 

Shimizu[a], Jeremy B. Morgan* [b], Brian M. Stoltz* [a]  

 

Abstract: Herein, we report the first Pd-catalyzed enantioselective 

arylation of -substituted -lactams.  Two sets of conditions were 

developed for this transformation, allowing for the use of either aryl 

chlorides or bromides as electrophiles.  Utilizing a highly electron-

rich, dialkylphosphine ligand, we have been able to construct -

quaternary centers in good yields (up to 91% yield) and high 

enantioselectivities (up to 97% ee). 

Nitrogen heterocycles are ubiquitous structural motifs that 

can be found across all areas and applications of organic 

chemistry.  A particularly important subgroup of this class are 

the pyrrolidinones, which along with their saturated counterparts 

the pyrrolidines, occur widely in nature,[1,2] possess a wide range 

of biological and pharmacological properties,[3] and are 

employed in materials[4] and catalysis.[5]  For these reasons, the 

development of stereoselective approaches to functionalized 

five-membered nitrogen-containing heterocycles is a topic of 

great interest in the synthesis of small molecules and natural 

products.   

 Our group has a long-standing interest in the 

stereoselective synthesis of five-membered N-heterocyclic 

building blocks, having developed methods for both 

enantioselective allylic alkylation[6] and enantioselective -

acylation of -butyrolactams.[7]  The -aryl pyrrolidinone building 

block is of special interest, as it would enable access to the 

phenethylbenzylamine structural motif, which is prevalent in a 

number of biologically active natural products and drug-like 

molecules (Figure 1a).[8] Nevertheless, methods describing the 

asymmetric -arylation of substituted pyrrolidinones to produce 

-quaternary lactams have previously remained elusive.  
Despite the apparent similarities to other known -arylation 

reactions, there are a number of subtle challenges that have 

potentially precluded -substituted -lactams from having been 

successfully implemented in Pd-catayzed asymmetric -

arylation chemistry.  One of the challenges associated with the 

use of lactams in metal-catalyzed enolate arylation is the 

necessity for enolization by strong base, which may lead to the 

generation of unwanted aryne intermediates from the aryl 

halide[9,10] in addition to catalyst decomposition.  As a result, 

prior reports are limited to either -unsubstituted piperidinones, 

which require pre-formation of a basicity-tempered zinc enolate 

to generate the desired product, or oxindoles,[11] a special case 

that does not require high temperatures or strongly basic 

conditions (Figure 1b).[12]  A crucial step in the development of 

this transformation would be the identification of a catalyst that 

not only possesses optimal steric and electronic properties, but 

also exhibits good stability under basic conditions.  Taking these 

considerations into account, we sought to develop the first 

method for the direct transition metal-catalyzed enantioselective 

-arylation of -substituted -lactams to generate all-carbon 

quaternary stereocenters. 

 

Figure 1. Representative benzylphenethylamine-type alkaloids and state of 

the art in transition metal-catalyzed -arylation of monocyclic lactams. 

 We initiated our investigation into the enantioselective -

arylation of N-p-methoxyphenyl (PMP) -methyl pyrrolidinone 

(1a) with chlorobenzene by examining the effect of a number of 

different ligands on the reactivity and selectivity of the reaction 

(Table 1).[13]  With Pd(dmdba)2 as the Pd source, commonly 

employed ligands (S)-BINAP (entry 1) and Josiphos (entry 2) 

resulted in both low yields and low enantiomeric excess.  We 

found that the ferrocelane class of ligands (L3-L5) was optimal; 

both L3 (entry 3) and L4 (entry 4) resulted in the formation of the 

desired -quaternary lactam 3aa in equally high yield and high 

enantiomeric excess.  However, the use of the bulkier L5 led to 
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both diminished yield and enantioselectivity.  Crucially, these 

highly electron-rich dialkylphosphine ligands should undergo 

rapid oxidative addition to the aryl halide, while the large bite 

angle should encourage facile reductive elimination.[14] 

Furthermore, since alkyl phosphines are less susceptible to P–C 

cleavage[15], we believe that these ligands might form a 

Pd/ligand complex that is more stable at high temperatures.  

Interestingly, we noted that the structurally similar phosphonato 

FerroTANE ligand (L6) (entry 6) resulted in low conversion. 

Table 1. Evaluation of Ligands for Pd-Catalyzed -Arylation of -Lactams.a 

 [a] Conditions: 0.1 mmol scale, 1a (1.5 equiv), 2a (1.0 equiv), LiHMDS (1.5 
equiv), 10 mol % Pd(dmdba)2, 12 mol % ligand, 0.5 mL dioxane. [b] 
Determined by LC-MS analysis of the crude reaction mixture using 1,3,5–
trimethoxybenzene as a standard. [c] Determined by chiral SFC analysis of the 
isolated product. PMP = p-methoxyphenyl. dmdba = 3,5,3’,5’–
dimethoxydibenzylideneacetone .   

Table 2. Optimization of Reaction Conditions.a 

 [a] Conditions: 0.1 mmol scale, 1a (1.5 equiv), Ph–X (1.0 equiv), base 1.5 
equiv), Pd2(pmdba)3 (2.5 mol %), ligand (7.5 mol %), 0.5 mL dioxane. [b] yield 
determined by LCMS analysis of the crude reaction mixture using 1,3,5–
trimethoxybenzene as a standard. [c] Determined by chiral SFC analysis of the 
isolated product. [d] Reaction performed at 80 °C. [e] Reaction performed at 
54 °C. PMP = p-methoxyphenyl. pmdba = 4,4’ –
dimethoxydibenzylideneacetone. 

 

 

 By changing the Pd source, we were able to produce a more 

active pre-catalyst that allowed for a lower catalyst loading and 

shorter reaction time with L3 (Table 2, entry 1). We found that 

the identity of the base was critical for high yields and 

enantioselectivities and dependent on the choice of electrophilic 

coupling partner: when chlorobenzene is used, LiHMDS resulted 

in the highest yield and enantioselectivity (entries 1, 4, and 5), 

whereas with bromobenzene, NaHMDS proved optimal (entries 

7 and 8).  By employing the less hindered ligand L4, we were 

able to isolate 3aa in 86% yield and 92% ee after 12 hours 

(entry 7).[16]  With this new set of conditions, the reaction 

proceeds at a lower temperature; the desired product is obtained 

in 83% yield and 92% ee (entry 8) after 15 h at 80 °C. Moreover, 

at 54 °C the product is still obtained in good yield and high 

enantiomeric excess (entry 10). 

Table 3. Scope of the N-Protecting Group.a 

[a] Conditions for each method are as follows: Method A: lactam (1.5 equiv), 
Ph–Cl (1.0 equiv), Pd2(pmdba)3 (2.5 mol%), L3 (7.5 mol %), LiHMDS (1.5 
equiv), dioxane (0.2 M), 100 °C, 20h. Method B: lactam (1.5 equiv), Ph–Br (1.0 
equiv), Pd2(pmdba)3 (2.5 mol%), L4 (7.5 mol%), NaHMDS (1.5 equiv), dioxane 
(0.2 M), 80 °C, 20 h. [b] 6 h. [c] 15 h. pmdba= 4,4’–
dimethoxydibenzylideneacetone.  

 

 With optimized conditions for aryl chlorides (Method A, Table 

2, entry 1) and aryl bromides (Method B, Table 2, entry 9) in 

hand, the effect of the N-protecting group on the reaction was 

examined (Table 3).  We were pleased to find that a number of 

different N-protecting groups were tolerated in our reaction.  Bis-

methoxyphenyl lactam 1b performs just as well as 1a with 

Method B, but a slight decrease in yield and enantioselectivity is 

observed when subjected to Method A (3ba).  Switching to 

ortho-methoxy phenyl substituted 1c or electron-deficient 

trifluoromethylphenyl 1e led to diminished yield and 

enantioselectivity (3ca and 3ea).  Although N-phenyl 1d does 

not outperform 1a in Method A, it does exhibit higher reactivity 

and enantioselectivity when exposed to Method B, furnishing the 

desired product in 91% yield and 93% ee (3da).  Benzyl-

protected lactam 1f affords -quaternary lactam 3fa in high 

levels of enantiomeric excess across both Methods.  
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 Next, we examined the substrate scope of the 

enantioselective -arylation (Table 4).  We found that aryl 

bromides and aryl chlorides with a variety of substitution 

patterns are accommodated in the arylation.  Aryl halides 

possessing electron-deficient (see products 3ab, 3ad, 3ah,[17] 

3ae) and electron-rich (3af, 3ag) substituents at the para 

position led to products with excellent enantioselectivites using 

Method A and B respectively.  Aryl halides possessing 

substituents at the meta position are also permissible in both 

Method A and B, although slightly diminished enantioselectivity 

is observed when 3-chloroanisole is used as the electrophile 

(3ai).  Unfortunately, only trace product is observed when ortho-

substituted aryl halides are exposed to our reaction 

conditions.[18]  Gratifiyingly, an N-methyl indole was also 

tolerated, as we obtained 5-indolyl lactam 3al in moderate yield 

and excellent enantioselectivity. 

Table 4. Scope of the Aryl Halide.a 

 [a] Conditions for each method are as follows: Method A: 1a (1.5 equiv), Ar–
Cl (1.0 equiv), Pd2(pmdba)3 (2.5 mol %),  L3 (7.5 mol %), LiHMDS (1.5 equiv), 
dioxane (0.2 M), 100 °C, 6 h. Method B: lactam (1.5 equiv), Ar–Br (1.0 equiv), 
Pd2(pmdba)3 (2.5 mol %), L4 (7.5 mol %) NaHMDS (1.5 equiv), dioxane (0.2 
M), 80 °C, 15 h. [b] Absolute configuration  determined via single crystal X-ray 
analysis. PMP = p-methoxyphenyl. pmdba = 4,4’ –
dimethoxydibenzylideneacetone. 

 The scope of substitution at the lactam -carbon was then 

examined (Table 5).  We found that sterically demanding -

substituents are well tolerated in both Methods.  Although the 

yields are slightly diminished, the high levels of enantioselectivity 

are retained.  Examples having ethyl (3ha, 3hb), benzyl (3ga, 

3gb), propyl (3ia), phenethyl (3ja), and 2-naphthylmethyl (3ka) 

substitution all furnish the -arylated products in good 

enantioselectivity.  -Benzyl substituted lactam 1g was also 

employed in the reaction with a number of different electrophilic 

coupling partners using both Methods.  Even with a more 

hindered substrate, similar patterns of reactivity and selectivity to 

-methyl substituted 1a were observed.  When an electron-

deficient aryl chloride coupling partner is used in Method A or m-

bromotoluene is used in Method B with 1g, the desired product 

is formed in high enantioselectivity and good yield (3gc and  

3gd). 

 

 

Table 5. Scope of the Lactam.a 

 [a] Conditions for each method are as follows: Method A: lactam (1.5 equiv), 
Ar–Cl (1.0 equiv), Pd2(pmdba)3 (2.5 mol %), L3 (7.5 mol %) LiHMDS (1.5 
equiv), dioxane (0.2 M), 100 °C, 20 h. Method B: lactam (1.5 equiv), Ar–Br (1.0 
equiv), Pd2(pmdba)3 (2.5 mol %), L4 (7.5 mol %) NaHMDS (1.5 equiv), 
dioxane (0.2 M), 80 °C, 20 h. PMP = p-methoxyphenyl.  pmdba = 4,4’ –
dimethoxydibenzylideneacetone. 

Recognizing the potential value of these enantioenriched, 

quaternary center-containing heterocycles to the synthetic and 

pharmaceutical communities, we sought to utilize this new 

transformation in the preparation of differentially substitutes five-

membered heterocycles (Scheme 1).  -Quaternary lactam 3aa 

can be swiftly deprotected with ceric ammonium nitrate (CAN) 

providing unprotected lactam 4 in 73% yield.  Reduction of the 

lactam carbonyl with lithium aluminum hydride provides the 

corresponding medicinally valuable pyrrolidine (5).[19]  Partial 

reduction of the lactam with lithium triethylborohydride and 

trapping of the resulting iminium ion with potassium cyanide 

yields chiral aminonitrile 6 in moderate yield but with high 

diastereoselectivity. 
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Scheme 1. Derivatization of Arylation Products.a 

 
 [a] Conditions: (a) CAN, MeCN/H2O, 0 °C, 30 min, 73% yield; (b) LAH, Et2O, 0 
°C to 23 °C, 16 h, 93% yield; (c) LiBEt3H, –78 °C to 23 °C, then AcOH, KCN, 0 
°C, 5 h, 43% yield, 93:7 dr. 

 

 In conclusion, we have developed a protocol for the first 

transition metal-catalyzed enantioselective -arylation of -

lactams.  Two related procedures were developed for this 

transformation, allowing for the use of either aryl chlorides or 

bromides as electrophiles.  We are able to construct -

quaternary stereocenters in good yield and high enantiomeric 

excess (up to 91% yield and 97% ee).  Asymmetry is induced 

through the use of a chiral, dialkyl bisphosphine ligand that 

generates a Pd/ligand complex that is stable under strongly 

basic conditions and elevated temperatures.  Critical to the 

development of these conditions was also the identification of an 

appropriate base and electrophile combination.  We found that a 

broad range of substitution is tolerated on either coupling 

partner.  We also demonstrated that these -quaternary lactams 

can be efficiently converted to a number of different 

enantioenriched nitrogen containing heterocyclic building blocks 

via product derivatizations.  Finally, we were pleased to find that 

in preliminary studies our conditions can be applied to the 

enantioselective -vinylation of lactams.[20]  A more extensive 

report of these investigations will be disclosed in due course.  
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