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Abstract: The atroposelective synthesis of PINAP
ligands has been accomplished via a palladium-
catalyzed C�P coupling process through dynamic
kinetic asymmetric transformation. These catalytic
conditions allow access to a wide variety of alkoxy-
and benzyloxy-substituted PINAP ligands in high
enantiomeric excess. The methods described in this
communication afford valuable P,N ligands in good
yields and high enantioselectivity using low catalyst
loading.

Keywords: PINAP; Dynamic kinetic asymmetric
transformation; Atroposelective synthesis; P,N li-
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The unique properties of the axially chiral P,N ligand
QUINAP (1) have been employed widely for various
transition metal catalyzed asymmetric reactions.[1]

Thus, approaches to the synthesis of QUINAP ligands
in high enantiomeric purity have been developed.[2,3]

In 2013, our laboratories explored the palladium-
catalyzed atroposelective synthesis of QUINAP and
its derivatives via kinetic resolution and dynamic
kinetic asymmetric transformation.[4] With a robust
method for the synthesis of chiral QUINAP in hand,
we turned our attention to the architecturally related
PINAP ligands (2).[5] PINAP ligands (2a and 2b),
which possess analogous ligation reactivity to QUI-
NAP, were first developed by the Carreira group in
2004.[6] Carreira and co-workers separated the two
atropoisomeric diastereomers through column chro-
matography by preparing chiral ether- or amine-
substituted PINAP scaffolds. Herein, we disclose

synthetic methods for accessing enantiomerically
enriched PINAP ligands via dynamic kinetic asymmet-
ric transformation (2a, 2 c).

Our initial attempts to apply the standard QUI-
NAP dynamic kinetic asymmetric transformation
conditions,[4] 3.0 mol % of Pd[(o-tol)3P]2 and 4.5 mol%
of (S, RFc)-Josiphos at 80 8C, to aryl triflate 3 afforded
various alkyl- or benzyl-substituted PINAP ligands
(Table 1). Asymmetric C�P couplings via dynamic
kinetic asymmetric transformation on substrates incor-
porating methoxy, ethoxy, and isopropoxy groups
furnished the corresponding PINAP ligands in good
yields and selectivities (4 a, 4 b, 4c). Cyclohexyl, 3,3-
dimethyl-1-butyl, and homoallyl ether groups were
also well tolerated under the reaction conditions to

give the desired products. (4 d, 4 e, 4f). Additionally,
3,5-dimethyl benzyloxy-substituted PINAP was ob-
tained in good yield and moderate selectivity (4 g).
Although these initial results were exciting, it was
clear that additional optimization was needed to
improve the enantioselectivities in the synthesis of
these PINAP ligands.

Figure 1. QUINAP (1) and PINAP (2).
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In order to allow more time for the isomerization
of the presumed arylpalladium complex before its
subsequent phosphination, diphenylphosphine (1.0 M
solution in dioxane) was added slowly.[7] In addition,
we used pre-stirred 1.0 mol % of Pd[(o-tol)3P]2 and
1.5 mol% of (S,RFc)-Josiphos solutions in dioxane.
Interestingly, improved enantioselectivity was ob-
served with reduced palladium and Josiphos ligand
loadings (1.0 mol % and 1.5 mol %, respectively) (Ta-
ble 2, entries 1 and 2). We were pleased to find that
higher enantioselectivities were obtained at lower
temperatures (Table 2, entries 2–4). However, the
conversion rate was dramatically diminished at 50 8C
(Table 2, entry 5).

With the optimized conditions in hand, we inves-
tigated the substrate scope of the reaction (Table 3).
Several alkoxy- and benzyloxy-substituted PINAP
ligands were furnished in improved enantioselectiv-
ities under the optimized conditions (4 a–4 h, 57–80%
yields and 82–96% ee). Even PINAP 4g, which had
been our worst example under our initial conditions,
could now be prepared in 60% yield and 94% ee.
Applying our optimized conditions to a (R)-phenyl-
ethoxy-substituted substrate, which was previously

prepared by the Carreira group by chromatographic
separation, generated the corresponding PINAP prod-
uct in 95% de (4 i). Interestingly, diastereomeric
PINAP 2a was produced by our method with lower
selectivity using the (R,SFc)-Josiphos ligand indicating
some balance between substituent and catalyst in the
process (e.g., mismatched pair). Thankfully, nearly
enantiopure PINAP 2 a was obtained after recrystalli-
zation.[8] Unfortunately, in the case of (R)-a-phene-
thylamine substituted PINAP, only moderate selectiv-
ity was observed (4 j). Additionally, application of our
conditions to the reaction of triflate 3 a with diphenyl-
phosphine oxide or (p-CF3�C6H4)2PH proved unsuc-
cessful, and only low yield and selectivities were
observed.[9,10]

We applied PINAP ligand 4a (96% ee) to two
different reactions (Scheme 1). Copper catalyzed
asymmetric phenylacetylene addition to isoquinoline
iminium 5 with PINAP ligand 4 a afforded propargyl-
amine 6 in 98% yield and 96% ee (Scheme 1a).[1l,11] In
addition, rhodium-catalyzed enantioselective dibora-
tion and oxidation of trans-b-methylstyrene 7 with
PINAP 4 a produced diol 8 in 71% yield and 88% ee
(Scheme 1b).[1e,j,12] The enantioselectivities and yields
with PINAP ligand 4 a are parallel to those with
QUINAP 1.

In conclusion, the atroposelective synthesis of
various achiral alkyl- or benzyloxy-substituted PINAP
ligands via dynamic kinetic asymmetric transformation
has been developed. The asymmetric PINAP ligands
formed in this communication are envisioned to be
useful in several important asymmetric reactions.

Table 1. Scope of Dynamic Kinetic Asymmetric Transforma-
tion Under Initial Standard Conditions.

[a] Reactions performed with 1.0 equiv. of triflate 3,
4.0 equiv. of DMAP, 3.0 mol% of Pd[(o-tol)3P]2, 4.5 mol%
of (S,RFc)-Josiphos, 1.05 equiv. of Ph2PH (1.0 M in dioxane)
at 0.20 M in dioxane at 80 8C in a glovebox. Ph2PH (1.0 M in
dioxane) was added over 4 h.
[b] All yields are isolated yields.
[c] Determined by chiral SFC analysis.

Table 2. Optimization of Reaction Parameters.

[a] Reactions performed with 1.0 equiv. of 3 a, 4.0 equiv. of
DMAP, 1.0 mol% of Pd[(o-tol)3P]2, 1.5 mol% of (S,RFc)-
Josiphos, 1.05 equiv. of Ph2PH (1.0 M in dioxane) at 0.20 M
in dioxane in a glovebox. Pd[(o-tol)3P]2 and (S,RFc)-Josiphos
in dioxane were pre-stirred before use. Ph2PH (1.0 M in
dioxane) was added over 8 h.
[b] All yields are isolated yields.
[c] Determined by chiral SFC analysis.
[d] ~50% conversion.
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Experimental Section
(This reaction was performed in a nitrogen-filled glovebox.)
Pd[(o-tol)3P]2 (10.8 mg, 0.0151 mmol) and (S,RFc)-Josiphos
(13.7 mg, 0.0226 mmol) in dioxane (0.302 mL) were pre-
stirred in a vial until all the solids were dissolved. To a
solution of triflates 3 (0.211 mmol, 1.00 equiv.) in dioxane

(1.06 mL) was added DMAP (0.844 mmol, 4.00 equiv.) and
pre-stirred Pd[(o-tol)3P]2 and (S,RFc)-Josiphos (0.05 M in
dioxane; 0.00211 mmol, 0.01 equiv.) at 23 8C. The mixture
was placed in a reaction well preheated to 60 8C. A solution
of Ph2PH (1.00 M in dioxane; 0.317 mmol, 1.50 equiv.) was
added to the reaction mixture in 20 uL portions every 30
minutes manually. After completion of the addition
(8 hours), the reaction was stirred for further 7 hours at
which point complete consumption of the starting material
was observed. The reaction was cooled, removed from the
glovebox and dilulted with EtOAc (1.50 mL) and water
(2.00 mL). The aqueous phase was extracted with EtOAc
(3 3 1.50 mL). The combined organic phases were washed
with brine, dried with MgSO4 and concentrated. The crude
material was purified by flash column chromatography on
silica gel to afford the corresponding PINAP 4.
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