Enantioselective Radical Reactions

Stoltz Group Literature Talk Monday May 10, 2004 Jeff Bagdanoff

Enantioselective Radical Reactions Contents

- 1. Introduction to Radical Reactivity
- 2. Molecular Orbital Interactions
- 3. Chiral Lewis Acids
 - a. Conjugate Reduction
 - b. Conjugate Addition
 - c. Addition/Trapping
 - d. Cyclizations
- 4. Halogen Transfer (Rh)
- 5. Radical Reagents
- 6. Electron Transfer Reactions (Reduction)
 - a. Homodimerization of Olefins
 - b. Reductive Cyclizaions
 - c. Ketyl Radical Addition
 - d. Epoxide Ring Opening
- 7. Oxidation
 - a. Coupling
 - b. Benzylic and Other Direct Oxidations
 - c. Oxidative Kinetic Resolution

Lead References:

Giese, B. Angew. Chem. Int. Ed. Engl. 1983, 22, 753.
Minisci, F.; Citterio, A. Adv. Free Radical Chem. 1980, 6.
Sibi, M. P.; Manyem, S.; Zimmerman, J. Chem. Rev. 2003, 103, 3263.
Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 162.
Renaud, P.; Gerster, M. Angew. Chem. Int. Ed. 1998, 37, 2562.

A linear Hammet Plot confirms the dependence of o-values of Z on reaction rates.

Giese, B.; Meister, J. Chem. Ber. 1977, 110, 178.

-No Hammet Corrolation exists for the reativity at the carbon bearing Y (${\boldsymbol \alpha}$ to bond forming center).

-Principally a stearic effect:

The Effect of Radical Substituents

Baban, J. A.; Roberts, B. P. J. Chem. Soc. Perkin Trans. 2 1981, 161.

CO₂CH₃

0.0038

i-Bu

CO₂CH₃ CO₂CH₃ **k**addition AcO. `,c−x Mé **k**abstraction RHg-H **k**addition Х Υ **k**abstraction CH₃ н = 1 *i*-Pr н 0.25 Additions of radicals to olefins are inhibited by increasing steric н 0.05 *i*-Bu demand of radical and olefin CO₂CH₃ CH₃ = 1 *i*-Pr CO₂CH₃ 0.11

Steric Effects on Selectivity of Radicals

Giese, B.; Kretzschmar, G.; Meixner, J. Chem. Ber. 1980, 113, 2787.

Divergent Properties

Free Radical Nucleophilicity is governed a very EARLY TS-----> SOMO-HOMO ineteraction. Ionic Nucleophilicity proceeds by a very LATE TS------> rehybridizaion after bond formation.

This differential reactivity between radicals and anions provides an effective mechanistic probe.

Memory of Chirality with Radical Intermediates Radical Clock hv DIPD PhSH 1.0 M PhSH toluene -78 °C Ph Ph ĊO₀H ۰'n >97% ee ring inversion (racemization) <0.5 Kcal/mol = 84% ee >97% ee The efficiency of chiral memory will depend on the relative rates of racemization and trapping. PhSH

Rate of racemization $k_{\rm R}$ and rate of H· transfer $k_{\rm H}$ related by: $k_{\rm R} = \frac{k_{\rm H}[{\rm PhSH}]2[{\rm P'}]}{([{\rm P}] - [{\rm P'}])}$

 \succeq k_H estimated at 1.1 x 10⁶ M⁻¹s⁻¹ at -78 °C from literature values (for *t*-BuSH)

k_R is then calculated as 3.9 x 10⁶ s⁻¹ at -78 °C

(Bu₃SnH provides 2.6% ee.)

 $k_{\rm H}$ for several H· sources is then calculated, including PhSH = 2.0 x 10⁷ M⁻¹ s⁻¹

Rychnovsky, S. D. JACS 2000, 122, 9386.

The Usual Players

1st example of asymmetric radical add'n by chiral LA

Murakata, M. Tetrahedron 1999, 55, 10295.

Chiral Lewis Acids

Catalytc O = S = N O = S = N O = S = N $MgBr_2 \cdot OEt_2 (30 mol\%)$ $RX, Bu_3SnH, Et_3B/O_2$ DCM, -78 °C

- Controll of rotamer population via template - A variety of achiral "templates" were examined:

<i>i</i> -Pr	80	80
<i>t</i> -Bu	84	89
C ₆ H ₁₁	71	82
CH ₂ OMe	95	87
Acetyl	<25	18

Sibi,M. P. JACS 2002, 124, 984.

Quat. Center Formation Allylations

-no rxn w/o initiator -no rxn w/ galvinoxyl radical inhibitor

R	LA (equiv.)	Additive	Yield (%)	ee (%)
Ме	1.0	none	72	27
Ме	1.0	Et ₂ O	84	81
CH ₂ OMe	e 1.0	none	75	-10
CH ₂ OMe	e 1.0	Et ₂ O	85	82
CH ₂ OMe	e 1.0	<i>i</i> -Pr ₂ O	83	43
CH ₂ OBr	ח 1.0	Et ₂ O	76	91
CH ₂ OBr	1 0.2	Et ₂ O	73	82
CH ₂ OBr	0.1	Et ₂ O	78	71

Ether additive influendes chiral sphere of catalyst.

Hoshino, O. JACS 1997, 119, 11713.

	$\left \frac{1000000000000000000000000000000000000$	> nol%) , R-I ≣t ₃ B/O ₂					Yield (% 1 92	6) ee (%) 72
SnBu ₃ -I i Polymeri	s not a competiti c pdts observed	ve LA fo with low	or this process. /er stannane loa	ading.		Porter N A ./A	CS 1995 11	7 11029
								, 11020.
$ \begin{array}{c} $								
	n= <i>P</i> P1			Lewis Acid	R-X	Yield(%)	dr	ee(%)
Lewis Acid	Yield(%)	dr	ee(%)	MgI ₂	MeOCH ₂ Br	80	20	72
Mgl ₂	93	37	93	Mgl ₂	Et-I	79	32	77
MgBr ₂	90	30	90	Mgl ₂	<i>c</i> -hexyl-l	80	60	92
Mg(CIO ₄) ₂	91	40	87	Mgl ₂	t-Bu-l	84	99	97
Cu(OTf) ₂	93	30	-79	Cu(OTf) ₂	<i>t</i> -Bu-I	90	99	-96

Sibi, M. P. JACS, 2001, 123, 9472.

Many other substrates explored. Most require much higher catalyst loadings.

Yang, D. JACS 2001, 123, 8612.

Halogen Atom Transfer

Assumed that "all radicals are restricted within coordination sphere of metal complex". However, no asymmetric induction a β position (?)

Electron Transfer Reactions: Ketyl Radicals

Homodimerization via Ketyl Radicals

Cyclization: Ketyl Radical Addition to Hydrazone

......

Electron Transfer Reactions: Ketyl Radical Addition

Plausible Mechanism:

Electron Transfer Reactions: Epoxide Ring Opening

Oxidative Couplings

Oxidative Coupling: Enol Ethers

Kurihara, M. Chem. Lett. 2001, 1324.

Chen, C. -T. Org. Lett. 2001, 3, 896.

Oxidative Aryl-Aryl Couplings with Cu

Asymmetric Catalytic Benzylic Oxidation

Chiral Heteroatom Transfer

Chiral H Abstraction

Katsuki, T. TL 1998, 54, 10339. and Synlett 1997, 836.

Benzylic and Beyond

Murahashi, S.-I. TL 1998, 39, 7921.

Oxidative Kinetic Resolution

Katsuki, T. TL 2000, 41, 5119.

Bonus: Radical Reactions in Natural Products Synthesis Penitrem D

Curran, D. P. Org. Lett. 2003, 5, 419.

In Conclusion.....

