Ruthenium in Organic Synthesis

Ernie Cruz Literature Presentation 02 February 2004 147 Noyes

Ruthenium in Organic Synthesis: Outline

- I. Regioselective Reductions
- **II. Oxidations**
- III. C-C bonds
 - A. Ruthenacycle Intermediates
 - B. Heteroatom Additions to Alkynes
 - C. C-H Activation
 - **D. Diazo Compounds**

IV. Appendix: Preparation of Ruthenium Catalysts

Ley

RUTHENIUM AT A GLANCE

Atomic mass: 101.07. History: Ruthenium was discovered by Karl Karlovich Klaus, a Russian chemist, in 1844.

Name: From the Latin Ruthenia, Russia.

Occurrence: Found in platinum and other ores.

Appearance: Silvery white, solid metal.

Behavior: RuO4 is toxic and

explosive.

Murahashi

Reviews

Murahashi *Chem. Rev.* 1998, *98*, 2599. Trost and Toste *Chem. Rev.* 2001, *101*, 2067.

Properties of Ruthenium

• Ruthenium has the widest range of oxidation states of any element

• Ruthenium complexes can adopt several coordination geometries

-				
	Oxidation State	Coordination number	Geometry	Example
	Ru(0)	5	trig. bipy.	Ru(CO) ₅
	Ru(II)	5	trig. bipy.	RuHCl(PPh ₃) ₃
		6	octahedral	RuCl ₂ CO(PR ₃) ₃
	Ru(III)	6	octahedral	[Ru(NH ₃) ₅ Cl] ²⁺
	Ru(VI)	4	tetrahedral	RuO ₄ ²⁻
	Ru(VII)	4	tetrahedral	RuO ₄ -
	Ru(VIII)	4	tetrahedral	RuO ₄

• Range of reactivity due to properties of Ru complexes: 1. High electron transfer ability

- 2. High Lewis acidity
- 3. Low redox potentials

4. Stabilities of reactive metallic species such as oxometals, metallacycles, and metal carbene complexes

Regioselective Reductions

J. Chem. Soc. Chem. Comm. 1967, 305.

Bull. Chem. Soc. Jpn. 1975, 48, 2852.

J. Chem. Soc. Chem. Comm. 1976, 314.

catalyst	amine	alcohol	product	% y ield
RuH ₂ (PPh ₃) ₄	$C_8H_{17}NH_2$	C ₇ H ₁₅ OH	C7H15NHC8H17	92
RuCl ₂ (PPh ₃) ₃	PhNH ₂	C ₃ H ₇ OH	PhN(C ₃ H ₇) ₂	88
RuCl₃·nH₂O· P(OBu)₃	N H	СН₃ОН	× N I	99
Ru(cod)(cot)		C₂H₅OH H₂	NHC ₂ H	85
RuCl ₂ (PPh ₃) ₃		NH ₂ OH		100

Murahashi TL 1982, 229.

Tetrapropylammonium Perruthenate (TPAP) Oxidations

- [RuO₄]⁻ is a milder oxidant than RuO₄; can cleave some C=C bonds
- [RuO₄]⁻ salts with large organic cations are soluble in organic solvents
- · Water inhibits catalyst turnover; use molecular sieves
- TPAP catalytic (5 mol %) with suitable co-oxidants; NMO most effective

Wide tolerance of functional groups

- Double bonds, polyenes, enones, halides, cyclopropanes, epoxides, and acetals
 Esters, amides, lactones, amines, peroxides, and catechols
 Protecting groups: SEM, MOM, BOM, MEM, trityl, silyl, benzyl, PMB, THP, acetate, and benzoate
- 4. Piperidines, pyrroles, indoles, furans, thiophenes, and pyridines are unreactive

70%

Ley Synthesis 1994, 7, 639 and ref. therein.

Panek JACS 2002, 124, 12806.

JACS 1999, 121, 4068.

Ruthenacyclopentane: Allene and Vinyl Ketone Coupling

- Role of CeCl₃ cocatalyst unknown; may activate enone
- Variety of allenes coupled to methyl or phenyl vinyl ketone in good yields (53-81%)

JACS 1999, 121, 4068.

Ruthenacyclopentane: Allene and Vinyl Ketone Coupling

Alcohols: JACS 1999, 121, 10842. Amines: JACS 2000, 122, 12007.

Ruthenacyclopentane: Allene and Vinyl Ketone Coupling

allene	Product	Yield
X	√x ↓ ↓	X = O 82% X = NBn 73%
x~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	x	X = O 74% X = NBn 67%
x~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X Ph	X = O 70% X = NBn 62%
X		X = O 68% X = NBn 90%
X		X = O 67% X = NBn 71%

• Ru catalyst: 10% CpRu(CH₃CN)₃PF₆

Cocatalyst:

-Alcohols require 15% CeCl₃ -Amines use 15% TiCl₄ or MeAlCl₂

Ruthenacyclopentene: Alkyne and Alkene Coupling--An Alder-Ene Reaction

JACS 1993, 115, 4361; JACS 1995, 117, 615.

Ruthenacyclopentene: Alkyne and Alkene Coupling--An Alder-Ene Reaction

Application in Total Synthesis: The Proposed Structure of Amphidinolide A

Cycloisomerization: 76% yield brsm as 3.5:1 mixture of branched and unbranched isomers

Trost JACS 2002, 124, 12420.

Mild conditions: conducted at rt
 Bi- and Tricyclic cycloheptadienes formed in

good yields (73-92%)

Ruthenacyclopentene: Intramolecular [5+2] Cycloaddition Examples

• "Complete diastereoselectivity is always observed" (Diastereomers are observed for substitution at other allylic position)

• Regioselectivity controlled by choice of substituents

Trost JACS 2000, 122, 2379.

Trost JACS 2000, 122, 2379.

Itoh JOC 1998, 63, 9610; Chem. Commun. 2000, 549.

Ruthenacyclopentadiene: [2+2+2] cycloaddition

Trost JACS 1997, 119, 836.

Heteroatom Additions to Alkynes: Addition of Water

An alternative mechanism at work?

Heteroatom Additions to Alkynes: Addition of Water (Alternative Mechanism)

Trost JACS 2000, 122, 5877.

Heteroatom Additions to Alkynes: Addition of Water (Alternative Mechanism)

Aromatic C-H Bond Activation

of aromtic C-H at the less hindered ortho-position

Reviewed in Murai Pure Appl. Chem. 1997, 589.

Aromatic C-H Bond Activation

Trost Chem. Rev. 2001, 2067 and ref. therein.

14. ACIEE 1995, 4, 2039; JACS 1996, 118, 100.

Conclusion

- Wide scope of reactions catalyzed or mediated by Ruthenium complexes
- Relatively new area in C-C bond formation;
 50% literature cited in Trost's review was published in 1997 or later
- "Prospects are clearly bright for more reactions to be discovered." -- Trost