The Quest for Selective Cyclopropanation

Jennifer Roizen Stoltz Group Literature Presentation Monday, November 1, 2004 8pm Noyes 147

The Quest for Selective Cyclopropanations - Outline

Cyclopropanation in General

- History and Types

Carbene Addition Across an Alkene

- Mechanisms
- Stereoselectivity
 - Challenges
 - Influences
 - Carbene Source
 - Alkene Source
 - Ligand Structure
 - Ligand Electronics

Recommended Reviews:

- Doyle, M. P.; McKervey, M. A.; Ye, T. *Modern Catalytic Methods for Organic Synthesis With Diazo Compounds: From Cyclopropanes to Ylides*; John Wiley & Sons, Inc.: New York, 1998.
- Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Stereoselective Cyclopropanation Reactions. *Chem. Rev.* **2003**, *103*, 977-1050.

Additional Reviews Recommended by Gene:

- Davies, *et al.* Intermolecular Metal-Catalyzed Carbenoid Cyclopropanations. *Organic Reactions*; New York, **2001**, *57*, 1-326.
- Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98(2), 911-935.
- Doyle, M. P.; Protopopova, M. N. Tetrahedron 1998, 54(28), 7919-7946.

Michael P. Doyle Huw M. L. Davies University of Maryland University of Buffalo

André B. Charette University of Montreal

Historic Cyclopropanations

Types of Cyclopropanation

1. Halomethyl Metal-Mediated Cyclopropanation (Zn, Sm, Al)

Types of Cyclopropanation

1. Halomethyl Metal-Mediated Cyclopropanation (Zn, Sm, Al)

Catalytic Cycle

Transition States in Catalytic Cycle

1. Cyclopropane (Doyle)

- Intermediate still proposed in stoichiometric cyclopropanations with Cr and other metals Yamada. Org. Lett. 2004, 6(6), 949-952.

Dai, X.; Warren, T. H. *J. Am. Chem. Soc.* **2004**, *126*, 10085-10094.

Metals that promote cyclopropanation

- late transition metals
- lewis acids
- coordinatively unsaturated at the metal center (base may influence reactivity)

Noted: Ru(II, III), Rh(II), Cu(I), Os(II), Fe(II)

Others: Co(II), Pd(II)

Stoichiometric: Pt(II), Cr(II)

More Others: Ni, Zn, U (with diazomethane as a carbene precursor)

Stereoselectivity

syn

74%

32%

- Chemoselectivity cyclopropanation, C–H / X–H insertion, ylide formation
- Position selectivity

Relative yields *syn* 26% 68%

Lahuerta, et al. Tetrahedron: Asymmetry **2003**, 14, 787-790.

- Diastereoselectivity

- Enantioselectivity

Chemoselectivity

Electronics

- more electrophilic metals --> more reactive carbenoid
- --> may favor C-H insertion over cyclopropanation

Soc. **1992**, *114*, 1874-1876.

Sterics

- dimerization of the carbene, and C–H insertion are favored with smaller carbene pocket

Review: Merlic, Craig; Zechman, Andrea L. Synthesis 2003, 8, 1137-1156.

Carbene Source

1. Carbene Formation

Phenyliodonium Ylides - mechanism questioned for the intramolecular case (Cu, Rh)

- when intermolecular reaction, similar dr, ee to corresponding diazo compound
- sometimes react when corresponding diazo compounds may not form carbene

76% yield, 92% ee

Müller, P.; Gharem, A. *Org. Lett.* **2004**, ASAP.

Carbene Source

- 2. Transition State
 - electronic: polar substituent --> transition state geometry (think Diels-Alder)
 - steric: ester substituent size larger substituents favor trans geometry

Chiral Auxilaries – Alkene and Carbene

Carbene

- chiral auxiliaries have not worked well with diazoalkanes with an electron withdrawing group

Alkene

- chiral auxiliaries have worked in trans-alkenes with diazomethane

Luithle, J. E. A.; Pietruszeka, J. *J. Org. Chem.* **1999**, *64*, 8287-8297.

- dr drops with *cis*-alkene for diazomethane
- chiral auxiliaries have not worked well with diazoalkanes with an electron withdrawing group

Carbene Influence on Intramolecular Reactions

 $R^1 = H$

- mono- and disubstituted alkenes

(most without high ee)

- small fused rings - Rh carboxamidate

- medium, large ring - Cu bisoxazole

- trisubstituted alkenes

- 5,6-membered ring - Co, Ru

R¹= vinyl, aryl

- monosubstitued alkenes - Davies Rh₂(DOSP)₄

Did not note successful chiral catalysis in literature

Fernandez Mateos, A.; Lopez Barba, A. M. *J. Org. Chem.* **1995**, *60*, 3580-3585.

Transition States for Intramolecular Reactions – The Alkene

Doyle Review Doyle, M. P. *et al. J. Am. Chem. Soc.* **1995**, *117*(21), 5763-5775.

Transition States for Intramolecular Reactions – The Alkene

Doyle Review Doyle, M. P. *et al. J. Am. Chem. Soc.* **1995**, *117*(21), 5763-5775.

Alkenes in Intermolecular Reactions

1. General

- Alkenes can coordinate to the metal, decreasing reactivity (demonstrated with porphyrins)

Tagliatesta, P.; Pastorini, A. *Journal of Molecular Catalysis* **2002**, *185*(1-2), 127-133.

- Substitution

- most ligand frameworks developed for cyclopropanation handle monosubstitued olefins though some only handle monosubstituted olefins with aryl substituents

- 1,1-substitued terminal alkenes stabilize charge in the transition state
 - --> more rapid reaction (neglecting sterics)
- 2. Specific

trans product (good ee) Ph Ph Cu-bis(oxazoline) variants and below salen-like ligand - for mono-, di- and trisubstituted ΗN Ms Ms salen-variant CO₂R ∎ CO₂R ۲R² Ph ו²י Ph н Cu X L₂ R¹ \mathbf{R}^1 Ĥ Cu-bis(oxazoline) Ph Ph Н R R CO₂R CO₂R CO₂R CO₂R Phw Ph∎

Trans Selection with Alkenes and Vinyl / Aryl Diazoacetates

trans product (good ee)

Davies D₂ symmetric Rh catalysts

- for mono- and 1,1-disubstituted alkenes

Davies, H. M. L.; Panaro, S. A. *Tetrahedron Lett.* **1999**, 5287-5290.

Cis Selection with Diazoacetates in Intermolecular Reactions

cis diastereomers less readily available Co salen or borate (with diazoacetate carbene precursor)

- for mono- and 1,1-disubstituted alkenes

Ligand Steric Bulk Enhances C–H Activation, cis Selection

Cu(I) homoscorpionate, Rh(II) porphyrins

- C-H activation yields increase in parallel to cis dr

- smallest catalytic pocket enhances both cis dr and C-H insertion

Pérez, P. J. *et al. J. Am. Chem. Soc.* **2001**, *123*, 3167-3168.

quadrants - C₁, C₂, D₂, D₄

Cu(I) - bidentate

C₁: Cu(I)-salicylaldimide

C₂: Cu-bis(oxazoline)

catalysts:

- effect facial approach of olefin
- orient carbene
- orient olefin

Copper Bis(oxazoline) - bidentate

	84	77	50	18	2	70	65	39
With tartrate backbone, dr:	<i>i</i> -Bu 73:27	> <i>i</i> -P 70:	Pr > E 30 68	3n > <i>t</i> 3:32 6	t-Bu > Et 64:36 58:44			

Andersson, *et al. J. Org. Chem.* **1997**, *62*, 2518-2526.

Rh(II) Carboxamidates - bridged tetradentate

larger R¹ --> higher ee

Rh(II) Carboxylates

Higher ee result with larger $R^1 = SO_2Ar$

ee decreases, while reactivity increases with longer Rh–Rh bonds - n=1: good E:Z, elevated reactivity, poor ee (relative to n=2)

Co(II) salen - tetradentate

Yamada, T. *et al. Bull. Chem. Soc. Jpn.* **2001**, *74*(11), 2139-2150.

With larger salen complexes, the diamine chirality still dictates the approach of the olefin (intramolecularly)

Katsuki, et al. Chem. Lett. 2002, 846-847.

Cobalt Carbenes with Single Bond Character

Co carbenes: single bond character

L = *N*-methylimidazole, or Cl

L = *N*-methylimidazole, or I (L=NMI --> more double bond character)

Yamada, T. *et al. J. Am. Chem. Soc.* **2002**, *124*(51), 15151-15153.

Tuning Ligands: Electronics

Electron poor ligands increase ee, reactivity in many systems

Nishiyama, *et al. Tetrahedron: Asymmetry* **1995**, *6*(10), 2487-2494.

Y=O, or Y=P(ArX³)₃ with X¹=X²=H Mezzetti, A. *et al.* Tetrahedron: Asymmetry 2003, 845-854.

(yield only)

Ishitani and Achiwa in Doyle Review

This relationship does not hold for Rh(III) porphyrins

X¹: *syn* : *anti* dr increases with ewg (styrene + ethyl diazoacetate)
X²: *syn* : *anti* dr decreases with Br (styrene + ethyl diazoacetate)
Trends do not appear with norbornene, or cyclohexene alkenes

Tagliatesta, P.; Pastorini, A. *Journal of Molecular Catalysis* **2002**, *185*(1-2), 127-133.

Fe(II), Os(II), Ru(II) porphyrins

- electron poor ligands increase the rate of cyclopropanation

Kodadek; Woo. *J. Am. Chem. Soc.* **1995**, *117*(36), 9194-9199. Berkessel, A. *et al. Chem. Eur. J.* **2003**, *9*, 4746-4756.

Tuning Ligands: Electronics of TS Populations

Dipole interactions --> transition state carbene populations

Doyle Review

Heteroatom Exchange in Ligands

Heteroatom exchange --> reactivity and ee

oxazolidinone v. pyrrolidinone

thiazolidine v. pyrrolidine

Yield: $X = O > CH_2$ ee: $X = CH_2 > O$

If $R^1 = Et$, ee: X = S > OIf $R^1 = i$ -Pr, Bnz, Ph, ee: X = O > S Pd-allylic substitutions (π -allyl)

Rh(II)-carboxamidate

Doyle Review

Masson, S. *et al. Tetrahedron: Asymmetry* **2004**, *15*, 2569-2573.

Masson, S. *et al. Tetrahedron* **2004**, *60*, 9263-9272.

Tuning with Additives: Electronics or Sterics?

Ligands and Additives

Rh(II) carboxylates - solvent: higher dielectric constants --> lower ee (early TS?) - solvent and additive: coordinating ability

--> no obvious trend, but clearly influential

Confusing Examples:

Oxygen-containing additives:

Asymmetry 2003, 14, 845-854.

- Ru(II) phosphino complex (vs. 5-coord.)

- Oxygen donor L (OEt₂) --> ee decreased

- Oxygen donor L (H₂O) --> ee, dr still high; reactivity decreased

- Ru(II) pybox complex

- *i*-PrOH, H_2O --> ee, dr, yield increased (less pronounced with H_2O) Nitrogen ligands:

- Co porphyrin L (pyridine, NMO) --> trans dr increased (Zhang, X. Peter)

Jessop, P. G. *et al. J. Am. Chem. Soc.* **2000**, *122*, 7638-7647.

Nishiyama, H. *et al. Tetrahedron: Asymmetry* **200**, 855-865.

Anions – Electronic Confusion

Counterions and ligands

Confusing Examples:

Counter anions:

- Ru(II) phosphino complex counteranions (PF₆⁻, BArF⁻)

Anion	Ar	L	Yield	cis : trans	ee cis
PF_6^-	C ₆ H₅	H ₂ O	28	86 : 14	91
PF_6^-	4-CF ₄ C ₆ H ₄	H ₂ O	17	93: 7	89
BArF ⁻	C ₆ H ₅	H ₂ O	12	72 : 28	34
BArF ⁻	$4-CF_4C_6H_4$	H ₂ O	35	98:2	80

Mezzetti, et al. Tetrahedron: Asymmetry 2003, 14, 845-854.

Ru(II) Phosphino

The Quest for Selective Cyclopropanations - Summary

Introduce Challenges and Accomplishments in Cyclopropanation Chemistry

Unique Challenge: Carbene Addition Across an Alkene or Alkyne Engages Chemoselectivity, Position Selectivity, Diastereoselectivity and Enantioselectivity SIMULTANEOUSLY

Questions: Can we exploit variations in mechanism or reaction timing?

Inputs to selectivity: carbene source, alkene source, ligand structure, ligand electronics

