

# Asymmetric Deprotonation

Ligands, Bases, and Applications



David Ebner Stoltz, Group Literature Presentation March 28, 2005

#### Enantioselective Deprotonation Reaction Pathways



#### Enantioselective Deprotonation Reaction Pathways



#### Enantioselective Deprotonation What Will NOT Be Covered



Great Chemistry Not Covered Today:

- Chiral Auxiliary-Directed Deprotonation

- Enantioselective Additions of Achiral Anions to Chiral or Homochiral Electrophiles
  - Aldols
  - Carbolithiations
  - Achiral Alkyllithium Additions to Electrophiles
- Enantioselective Reactions of Racemic or Equilibrating Anions
  - Deprotonation Adjacent to S, P, Se, Ph (usually)
  - Wittig Rearrangements

## Enantioselective Deprotonation Outline and Key Players

- I. meso-Ketone Deprotonations
- II. meso-Epoxide Deprotonations
  a. β-Deprotonation
  b. α-Deprotonation
- III. Deprotonation Adjacent to Heteroatomsa. O: Alkyl and Allylic Systemsb. N: Alkyl, Benzylic, and Allylic Systems
- *IV.* Other Enantioselective Deprotonations
  a. Elimination of HX
  b. Aromatic Lithiation



Tokvo

Ketones



N. Simpkins Nottingham Ketones and Aromatics



M. Majewski Saskatchewan Ketones







D. Hodgson Oxford Epoxides

D. Hoppe Muenster Heteroatoms: O

P. Beak Illinois, Urbana-Champaign Heteroatoms: N

#### **General Reviews:**

- 1. Majewski, "Enantioselective Deprotonation of Cyclic Ketones," in <u>Advances in Asymmetric Synthesis</u>, Vol. 3, pp 39-76, JAI Press, London: 1998.
- 2. Waldmann, "Enantioselective Deprotonation and Protonation," in Organic Synthesis Highlights II, H. Waldmann, ed. pp 19-28, VCH, Weinheim: 1995.
- 3. Organolithiums in Enantioselective Synthesis, D. Hodgson, ed. Springer, New York: 2003. (Whole book is good, especially pp 61-286.)
- 4. O'Brien, "Recent Advances in Asymmetric Synthesis Using Chiral Lithium Amide Bases," J. Chem. Soc., Perkin Trans. 1, 1998, 1439-1457.
- 5. Hoppe and Hense, "Enantioselective Synthesis with Lithium/(-)-Sparteine Carbanion Pairs," Angew. Chem. Int. Ed. Engl. 1997, 36, 2282-2313.
- 6. Hodgson, Gibbs, and Lee, "Enantioselective Desymmetrisation of Achiral Epoxides," Tetrahedron, 1996, 52 (46), 14361-14384.
- 7. Cox and Simpkins, "Asymmetric Synthesis Using Homochiral Lithium Amide Bases," Tetrahedron: Asymmetry, 1991, 2 (1), 1-26.
- 8. Eames, "Recent Developments in Enantioselective Deprotonation Mediated by Sub-Stoichiometric Quantities of Chiral Bases," *Eur. J. Org. Chem.*, **2002**, 393-401.
- 9. Beak, Basu, Gallagher, Park and Thayumanavan, "Regioselective, Diastereoselective, and Enantioselective Lithiation-Substitution Sequences: Reaction Pathways and Synthetic Applications," *Acc. Chem. Res.* **1996**, *29*, 552-560.

#### Asymmetric Deprotonation of meso Cyclic Ketones General Considerations



#### Chiral Lithium Amides Used in Ketone Deprotonations Only a Few of the Many!



#### **Prochiral 4-Substituted Cyclohexanones** Enantioselective Deprotonation of Simple Substrates





Simpkins, et. al. J. Chem. Soc., Perkin Trans. 1 1993, 3113

#### Tropinone Derivatives

Different Conditions and Electrophiles Lead to a Variety of Products



Tetrahedron Lett. 1995, 36, 5465

#### Other Prochiral Cyclic Substrates Similar Ligands Yield Good ee's with a Variety of Electrophiles



#### Catalytic Asymmetric Ketone Deprotonations Early Efforts Lead to Moderate Selectivity



### Chiral Magnesium Amides in Ketone Deprotonation

Less Reactive Alternative to Lithium Amides



Kerr, Henderson, et. al. Tetrahedron, 2002, 58, 4573





![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

#### Asymmetric Deprotonation of Epoxides Can Reactivity Be Controlled?

![](_page_17_Figure_1.jpeg)

Hodgson and Gras, Synthesis, 2002, 12, 1625

#### Asymmetric $\beta$ -Deprotonation of Epoxides Allylic Alcohols Using Lithium Aminoamide Bases

![](_page_18_Figure_1.jpeg)

Singh, et. al. J. Org. Chem, 1996, 61, 6108

Asymmetric *B*-Deprotonation of Epoxides Use of Commercially-Available Ephedrine-Based Aminoalcohols

![](_page_19_Figure_1.jpeg)

Murphy, et. al. J. Chem. Soc., Chem. Commun., 1993, 884

![](_page_19_Figure_3.jpeg)

Hodgson, et. al. Tetrahedron: Asymmetry, 1996, 7, 407

#### Catalytic Asymmetric Examples Recent Studies Allow Similar Levels of Selectivity

![](_page_20_Figure_1.jpeg)

#### Enantios elective $\alpha$ -Deprotonation of Epoxides Transannular C-H Insertion With Alkyllithium Diamine Complexes

![](_page_21_Figure_1.jpeg)

<sup>54%, 89%</sup> ee

Hodgson, et. al. J. Chem. Soc., Perkin Trans 1, 2001, 2161

#### More Transannular Epoxide Rearrangements Reactivity Differences in Bicyclic Systems

![](_page_22_Figure_1.jpeg)

Hodgson and Marriott, Tetrahedron: Asymmetry, 1997, 8, 519

# Trapping of Lithiated Epoxides

Enantioselective Epoxide Substitution with Various Electrophiles

![](_page_23_Figure_2.jpeg)

Hodgson, et. al. Org. Biomol. Chem. 2003, 1, 4293

#### Deprotonation Adjacent to Heteroatoms A Return to Reaction Pathways

![](_page_24_Figure_1.jpeg)

Asymmetric Deprotonation Adjacent to Heteroatoms • X = O, R = Alkyl • X = CH=CR'OR'', R = Aryl, Alkyl • X = N, R = Alkyl, Aryl, Allyl

#### Deprotonation Adjacent to Oxygen Alkyl Carbamates

![](_page_25_Figure_1.jpeg)

pe, et. al. Angew. Chem., Int. Ed. Engl. **1990**, 29, 1422 Angew. Chem., Int. Ed. Engl. **1992**, 31, 1505 Synthesis **1999**, 1573 Org. Lett. **2002**, 4, 2189

![](_page_26_Figure_0.jpeg)

Hoppe, et. al. Synlett 1994, 1034

#### Silyl Alkenyl Carbamates Configurationally Stable Allyllithiums

![](_page_27_Figure_1.jpeg)

Hoppe, et. al. Org. Lett. 2004, 6, 783

#### Enantioselective Homoaldols

Metal Exchange to Ti Leads to a Highly Diastereoselective Process

![](_page_28_Figure_2.jpeg)

Hoppe, et. al. Org. Lett. 2004, 6, 783

#### Deprotonation Adjacent to Nitrogen Alkyl Carbamates Revisited

![](_page_29_Figure_1.jpeg)

Dieter, et. al. J. Am. Chem. Soc. 2001, 123, 5132

#### Benzylic Carbamates Configurationally Stable Benzyllithiums Possible

![](_page_30_Figure_1.jpeg)

Beak, et. al. J. Am. Chem. Soc. 1996, 118, 3757

#### More Benzylic Carbamates

Applications and Electrophiles

![](_page_31_Figure_2.jpeg)

#### Lithium Amides in Benzylic Deprotonation Cyclization of Arylamides Leads to Isoindolones

![](_page_32_Figure_1.jpeg)

Clayden, et. al. *Tetrahedron* **2002**, *58*, 4727 *J. Am. Chem. Soc.* **2005**, *127*, 2412

#### Enantioselective N-Allylcarbamate Deprotonation

![](_page_33_Figure_1.jpeg)

Beak, et. al. J. Am. Chem. Soc. **1996**, *118*, 12218 J. Am. Chem. Soc. **2001**, *123*, 1004

#### Enantioselective Synthesis by Loss of HX Chiral Amides Lead to Enantioenriched Alkenes

![](_page_34_Figure_1.jpeg)

Duhamel, et. al. Tetrahedron: Asymmetry, 1990, 1, 347

#### More Enantioselective Loss of HX

Chiral Alkoxides Allow Catalytic Reactions

![](_page_35_Figure_2.jpeg)

#### *Enantioselective Lithiation of Aromatics Generation of Planar Chirality with Lithium Amide Bases*

![](_page_36_Figure_1.jpeg)

Simpkins and Price, Tetrahedron Lett., 1995, 36, 6135

.....

![](_page_36_Figure_4.jpeg)

Simpkins, et. al. J. Chem. Soc., Perkin Trans 1, 1997, 401

#### *Enantioselective Lithiation of Aromatics Generation of Planar Chirality with Alkyllithium / Sparteine*

![](_page_37_Figure_1.jpeg)

Snieckus, et. al. J. Am. Chem. Soc., 1996, 118, 685

![](_page_37_Figure_3.jpeg)

Uemura, et. al. Tetrahedron: Asymmetry, 1994, 5, 1427