Practical Catalytic Asymmetric Epoxidations

Outline

I. Directed Epoxidations A. Sharpless **B. Yamamoto Homoallylic Alcohol Example II. Metal Oxo-Catalyzed Epoxidations** A. Porphyrin Example B. Jacobsen-Katsuki **III. Dioxirane-Catalyzed Epoxidations** A. Yang **B.** Denmark C. Shi **IV. Nucleophilic Epoxidations** A. Juliá B. Shibasaki V. Miscellaneous Methods

General Section Outline

Extensive Current General Review

I. History

II. Scope

III. Mechanism

IV. Synthetic Example

Xia, Q.-H.; Ge, H.-Q.; Ye, C.-P.; Liu, Z.-M.; Su, K.-X.; Su, K.-X. Chem. Rev. 2005, 105, 1603–1662.

Directed Epoxidations

Timeline

1965-1967	Development of the Halcon Oxirane process for the production of propene oxide
1967	Discovery of directing effects in metal-mediated epoxidations of allylic alcohols
1980	Discovery by Sharpless of the asymmetric Ti tartrate epoxidation of allylic alcohols
1981	First reports of practical synthetic applications of the Ti tartrate technology
1981	Development by Sharpless of the Ti-catalyzed kinetic resolution of secondary allylic alcohols
1986-1987	Discovery by Sharpless that addition of molecular sieves renders Ti tartrate epoxidations truly catalytic

Sharpless Asymmetric Epoxidation (SAE)

Reviews

Johnson, R. A.; Sharpless. K. B. Catalytic Asymmetric Epoxidation of Allylic Alcohols. In *Catalytic Asymmetric Synthesis,* 2nd ed.; Ojima, I. Ed. Wiley-CVH: New York, 2000; 231–280.

Katsuki, T. Epoxidation of Allylic Alcohols. In *Comprehensive Asymmetric Catalysis,* 1st ed.; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Eds.; Springer: New York, 1999; Vol. 2, 621–648.

Johnson, R. A.; Sharpless. K. B. Addition Reactions with Formation of Carbon–Oxygen Bonds: Asymmetric Methods of Epoxidation. In *Comprehensive Organic Synthesis*, 1st ed.; Trost, B. M., Fleming, I. Eds.; Pergamon Press: New York, 1991; Vol. 7, 389–436.

Jacobsen, E. N. Transition Metal-catalyzed Oxidations: Asymmetric Epoxidation. In *Comprehensive Organometallic Chemistry II*, 1st ed.; Abel, E. W.; Stone, F. G. A.; Wilkinson, G. Eds.; Pergamon Press: New York,1995; Vol. 12, 1097–1135

SAE: Substrate Scope

SAE: Kinetic Resolution – Relative Rates (*k*_{rel} values)

Johnson, R. A.; Sharpless. K. B.; Catalytic Asymmetric Epoxidation of Allylic Alcohols. In *Catalytic Asymmetric Synthesis*, 2nd ed.; Ojima, I. Ed.; Wiley-VCH: New York, 2000; 231–280 and references therein.

SAE: Kinetic Resolution – Relative Rates (*k*_{rel} values)

Johnson, R. A.; Sharpless. K. B.; Catalytic Asymmetric Epoxidation of Allylic Alcohols. In *Catalytic Asymmetric Synthesis*, 2nd ed.; Ojima, I. Ed.; Wiley-VCH: New York, 2000; 231–280 and references therein.

SAE: Substrate Scope

Incompatible Functional Groups

Johnson, R. A.; Sharpless. K. B.; Catalytic Asymmetric Epoxidation of Allylic Alcohols. In *Catalytic Asymmetric Synthesis*, 2nd ed.; Ojima, I. Ed.; Wiley-VCH: New York, 2000; 231–280.

Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. *Adv. Synth. Catal.* **2001**, *343*, 5–26, supporting information and references therein.

SAE: Kinetic Resolution – Unorthodox Substrates

Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5–26, supporting information and references therein.

SAE: Selectivity Mnemonics

Asymmetric Epoxidation

Kinetic Resolution

D-(-)-diethyl tartrate (unnatural)

L-(+)-diethyl tartrate (natural)

D-(–)-diethyl tartrate (unnatural)

Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974-5976.

Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237-6240.

Johnson, R. A.; Sharpless. K. B.; Catalytic Asymmetric Epoxidation of Allylic Alcohols. In *Catalytic Asymmetric Synthesis*, 2nd ed.; Ojima, I. Ed.; Wiley-VCH: New York, 2000; 231–280 and references therein.

SAE: Proposed Catalytic Cycle

SAE: Proposed Transition State

Finn, M. G.; Sharpless. K. B. J. Am. Chem. Soc. 1991, 113, 113–126.

Johnson, R. A.; Sharpless. K. B.; Catalytic Asymmetric Epoxidation of Allylic Alcohols. In *Catalytic Asymmetric Synthesis*, 2nd ed.; Ojima, I. Ed.; Wiley-VCH: New York, 2000; 231–280.

rate = $\frac{[Ti(tartrate)(OR)_2] [TBHP] [allylic alcohol]}{[ligand alcohol]^2}$

Corey Proposed Transition State

Corey, E. J. J. Org. Chem. 1990, 55, 1693–1694.

SAE: Synthetic Example

Paterson, I.; De Savi, C.; Tudge, M. Org. Lett 2001, 3, 3149–3152.

Directed Epoxidation of Homoallylic Alcohols

Makita, N.; Hoshino, Y.; Yamamoto, H. Angew. Chem. Int. Ed. 2003, 42, 941–9434.

Also see: Blanc, A.; Toste, F. D. Angew. Chem. Int. Ed. 2006, 45, 2096–2099.

Porphyrin/Salen-Based Epoxidations

Timeline

- 1975 Report by Collman of the chemically robust class of "picket fence" porphyrins
- 1979 Discovery by Groves that iron porphyrin complexes mimic the epoxidation activity of cytochrome P-450
- 1983 First report of porphyrin-catalyzed asymmeric epoxidation. Proposal by Groves of the side-on approach transition state model
- 1983–1986 Detailed mechanistic studies by Kochi on epoxidation reactions catalyzed by achiral salen complexes
- 1990–1993 Discovery and development by Jacobsen and Katsuki of enantioselective epoxidation of unfunctionalized alkenes by [Mn(salen)]

Porphyrin-Based Epoxidations

Reviews

Rose, E.; Andrioletti, B.; Zrig, S.; Quelquejeu-Ethéve, M. Chem. Soc. Rev. 2005, 34, 573–583.

Katsuki, T. Asymmetric Epoxidation of Unfunctionalized Olefins and Related Reactions. In *Catalytic Asymmetric Synthesis,* 2nd ed.; Ojima, I. Ed. Wiley-CVH: New York, 2000; 287–325.

Jacobsen, E. N.; Wu, M. H. Epoxidation of Alkenes other than Allylic Alcohols. In *Comprehensive Asymmetric Catalysis,* 1st ed.; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Eds.; Springer: New York, 1999; Vol. 2, 649–677.

Jacobsen, E. N. Transition Metal-catalyzed Oxidations: Asymmetric Epoxidation. In *Comprehensive Organometallic Chemistry II,* 1st ed.; Abel, E. W.; Stone, F. G. A.; Wilkinson, G. Eds.; Pergamon Press: New York, 1995; Vol. 12, 1097–1135

Porphyrin-Based Epoxidations: An Example

Yields based on consumed PhIO

Rose, E.; Ren, Q.-Z.; Andrioletti, B. Chem. Eur. J. 2004, 10, 224–230.

Salen-Based Epoxidations

Reviews

McGarrige, E. M.; Gilheany, D. G. Chem. Rev. 2005, 105, 1563-1602.

Katsuki, T. Adv. Synth. Catal. 2002, 344, 131–147.

Katsuki, T. Asymmetric Epoxidation of Unfunctionalized Olefins and Related Reactions. In *Catalytic Asymmetric Synthesis,* 2nd ed.; Ojima, I. Ed. Wiley-CVH: New York, 2000; 287–325.

Jacobsen, E. N.; Wu, M. H. Epoxidation of Alkenes other than Allylic Alcohols. In *Comprehensive Asymmetric Catalysis,* 1st ed.; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Eds.; Springer: New York, 1999; Vol. 2, 649–677.

Katsuki, T. J. Mol. Catal. A: Chem. 1996, 113, 87–107.

Jacobsen, E. N. Transition Metal-catalyzed Oxidations: Asymmetric Epoxidation. In *Comprehensive Organometallic Chemistry II*, 1st ed.; Abel, E. W.; Stone, F. G. A.; Wilkinson, G. Eds.; Pergamon Press: New York,1995; Vol. 12, 1097–1135.

Katsuki, T. Coord. Chem. Rev. 1995, 140, 189-214.

Lee, N. H.; Jacobsen, E. N. Tetrahedron Lett. 1991, 32, 6533–6536. Chang, S.; Lee, N. H.; Jacobsen, E. N. J. Org. Chem. 1993, 58, 6939–6941.

Brandes, B. D.; Jacobsen, E. N. J. Org. Chem. 1994, 59, 4378-4380.

56–69% ee with NaOCI

Configurations not indicated

Palucki, M.; McCormick, G. J.; Jacobsen, E. N. Tetrahedron Lett. 1995, 36, 5457–5460.

Palucki, M.; Pospisil, P. J.; Zhang, W.; Jacobsen, E. N. J. Am. Chem. Soc. 1994, 116, 9333-9334.

Jacobsen, E. N.; Wu, M. H. Epoxidation of Alkenes other than Allylic Alcohols. In *Comprehensive Asymmetric Catalysis,* 1st ed.; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Eds.; Springer: New York, 1999; Vol. 2, 649–677.

Sasaki, H.; Irie, R.; Hamada, T.; Suzuki, K.; Katsuki, T. Tetrahedron 1994, 50, 11827–11838.

Fukuda, T.; Irie, R.; Katsuki, T. Synlett 1995, 197–198.

Mikame, D.; Hamada, T.; Irie, R.; Katsuki, T. Synlett 1995, 827-828.

Jacobsen-Katsuki Epoxidation: Stereoselectivity Model

Based on: Fukuda, T.; Irie, R.; Katsuki, T. Synlett 1995, 197–198.

Modified based on data from: Brandes, B. D.; Jacobsen, E. N. J. Org. Chem. 1994, 59, 4378-4380.

Jacobsen-Katsuki Epoxidation: Stereoselectivity Model

Based on: Katsuki, T. Adv. Synth. Catal. 2002, 344, 131-147.

Modified based on data from: Brandes, B. D.; Jacobsen, E. N. J. Org. Chem. **1994**, *59*, 4378–4380, and Fukuda, T.; Irie, R.; Katsuki, T. Synlett **1995**, 197–198.

Jacobsen-Katsuki Epoxidation: Mnemonic

Rotate left π-substituent forward to Predict trans-epoxide stereochemistry.

Adapted from: Brandes, B. D.; Jacobsen, E. N. J. Org. Chem. 1994, 59, 4378–4380.

Modified based on data from: Fukuda, T.; Irie, R.; Katsuki, T. Synlett 1995, 197–198.

Jacobsen-Katsuki Epoxidation: Simplified Catalytic Cycle

Possibility of multiple catalytically active (salen)Mn species present in epoxidation reactions

McGarrige, E. M.; Gilheany, D. G. Chem. Rev. 2005, 105, 1563–1602.

Jacobsen-Katsuki Epoxidation: Mechanistic Possibilities

Taken from E. N. Jacobsen lecture notes, Chemistry 153, Harvard University, Spring 2001.

McGarrige, E. M.; Gilheany, D. G. Chem. Rev. 2005, 105, 1563-1602.

Jacobsen, E. N.; Wu, M. H. Epoxidation of Alkenes other than Allylic Alcohols. In *Comprehensive Asymmetric Catalysis,* 1st ed.; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Eds.; Springer: New York, 1999; Vol. 2, 649–677.

Jacobsen-Katsuki Epoxidation: Synthetic Example

active metabolite of benzo[a]pyrene

Huang, X.; Harris, T. M. J. Chem. Soc., Chem. Commun. 1995, 1699–1700.

Dioxirane-Based Epoxidations

Timeline

- 1899 Intermediacy of dioxiranes first postulated by Baeyer and Villiger in the oxidation of menthone
- 1972 Isolation of dioxiranes from the oxidation of dilithioalkoxides reported in a patent by Talbott and Thompson
- 1974 Montgomery speculates that dioxiranes are the active intermediates in the decomposition of Oxone and the oxidation of halides and dyes
- 1977 Observation of the parent dioxirane in the gas phase reported separately by Suenram and Martinez
- 1979 Montgomery's speculation substantiated by ¹⁸O labeling studies reported by Curci and Edwards
- 1985 Preparation and isolation of dimethyldioxirane from acetone reported by Murray
- 1996 Yang reports up to 87% ee in oxidation of olefins with catalytic chiral dioxiranes
- 1996 Shi reports stochiometric epoxidations in >90% ee with a fructose-derived dioxirane
- 1997 Shi reports that modification of reaction conditions allow epoxidation with catalytic amounts of his chiral ketone

Dioxirane-Based Epoxidations

Reviews

Yang, D. Acc. Chem. Res. 2004, 37, 497–505.

Shi, Y. Acc. Chem. Res. 2004, 37, 488–496.

Shi, Y. J. Synth. Org. Chem. Jpn. 2002, 60, 342–349.

Frohn, M.; Shi, Y. Synthesis 2000, 1979–2000.

Denmark, S. E.; Wu, Z. Synlett 1999, 847-859.

For extensive referencing of other ketone-based catalysts, see: Shing, T. K. M.; Leung, G. Y. C.; Luk T. J. Org. Chem. 2005, 70, 7279–7289 (not a review).

Dioxirane-Based Epoxidations: Catalytic Cycle

Adapted from: Denmark, S. E.; Wu, Z. Synlett 1999, 847-859.

Denmark Epoxidation

Denmark, S. E.; Matsuhashi, H. J. Org. Chem. 2002, 67, 3479–3486.

Shi Epoxidation: trans-Disubstituted Olefins

Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224–11235.

Wang, Z.-X.; Shi, Y. J. Org. Chem. 1998, 63, 3099-3104.

Shi Epoxidation: trans-Disubstituted Olefins

Wang, Z.-X.; Cao, G.-A.; Shi, Y. J. Org. Chem. 1999, 64, 7646-7650.

Frohn, M.; Tu, Dalkiewicz, M.; Y.; Wang, Z.-X.; Shi, Y. J. Org. Chem. 1998, 63, 2948–2953.

Shi Epoxidation: Trisubstituted Olefins

Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224–11235.

Warren, J. D.; Shi, Y. J. Org. Chem. 1999, 64, 7675-7677.

Zhu, Y.; Shu, L.; Tu, Y.; Shi, Y. J. Org. Chem. 2001, 66, 1818–1826.

Shi Epoxidation: Trisubstituted Olefins

Zhu, Y.; Shu, L.; Tu, Y.; Shi, Y. J. Org. Chem. 2001, 66, 1818–1826.

Shi Epoxidation: Trisubstituted Olefins

Wally, Z.-A., Gao, G.-A., Sill, Y. J. Oly. Chem. 1999, 04, 7646–7650.

Frohn, M.; Tu, Dalkiewicz, M.; Y.; Wang, Z.-X.; Shi, Y. J. Org. Chem. 1998, 63, 2948–2953.

Shi Epoxidation: α , β -Unsaturated Esters

Wu, X.-Y.; She, X.; Shi, Y. J. Am. Chem. Soc. 2002, 124, 8792-8793.

Shi Epoxidation: Stereoselectivity Model

Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224–11235.

Shi Epoxidation: Terminal Olefins

Tian, H.; She, X.; Yu. H.; Shu, L.; Shi, Y. J. Org. Chem. 2002, 67, 2435–2446.

Shu, L.; Shi, Y. Tetrahedron Lett. 2004, 45, 8115–8117.

Burke, C. P.; Shi, Y. Angew. Chem. Int. Ed. 2006, 45, 4475–4478.

Wong, O. A.; Shi, Y. J. Org. Chem. 2006, 71, 3973–3976.

Shi Epoxidation: Stereoselectivity Model

Tian, H.; She, X.; Yu. H.; Shu, L.; Shi, Y. J. Org. Chem. 2002, 67, 2435–2446.

Shi Epoxidation: Tri- and Tetrasubstituted Olefins

*absolute configuration assigned by analogy

Shen, Y.-M.; Wang, B.; Shi, Y. Angew. Chem. Int. Ed. 2006, 45, 1429–1472.

Shen, Y.-M.; Wang, B.; Shi, Y. Tetrahedron Lett. 2006, 47, 5455–5488.

Shi Epoxidation: Tri- and Tetrasubstituted Olefins

Shen, Y.-M.; Wang, B.; Shi, Y. Angew. Chem. Int. Ed. 2006, 45, 1429–1472.

Shen, Y.-M.; Wang, B.; Shi, Y. Tetrahedron Lett. 2006, 47, 5455–5488.

Shi Epoxidation: Synthetic Example

Nucleophilic Epoxidations

Timeline

- 1980 First highly enantioselective epoxidation reaction reported by Juliá, epoxidizing chalcone in >90% ee
- 1997 Shibasaki reports that BINOL-derived catalysts provide high enantioselectivity in the epoxidation of α , β -unsaturated ketones

Reviews

Shibasaki, M.; Kanai, M.; Matsunaga, S. Aldrichachim. Acta 2006, 39, 31–39.

Porter, M. J.; Skidmore, J. Chem. Commun. 2000, 1215–1225.

Polyamino Acid-Catalyzed Epoxidations: Lead References

First report: Juliá, S.; Masana, J.; Vega, J. C. Angew. Chem. Int. Ed. Engl. 1980, 19, 929–9310.

For current lead references, see: Lauret, C.; Roberts, S. M. Aldrichim. Acta 2002, 35, 47-51.

Kelly, D. R.; Roberts, S. M. Biopolymers 2006, 84, 74-89.

Shibasaki Epoxidation: Enones

Nemoto, T.; Ohshima, T.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 2725–2732.

Shibasaki Epoxidation: Amides

Nemoto, T.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 9474–9475.

Ohshima, T.; Nemoto, T.; Tosakai, S.-Y.; Kakei, H.; Gnanadesikan, V.; Shibasaki, M. Tetrahedron Lett. 2003, 59, 10485–10497.

Shibasaki Epoxidation: Amides

Ohshima, T.; Nemoto, T.; Tosakai, S.-Y.; Kakei, H.; Gnanadesikan, V.; Shibasaki, M. Tetrahedron Lett. 2003, 59, 10485–10497.

Shibasaki Epoxidation: Amides

Matsunaga, S.; Qin, H.; Sugita, M.; Okada, S.; Kinoshita, T.; Yamagiwa, N.; Shibasaki, M. Tetrahedron 2006, 62, 6630–6639.

Shibasaki Epoxidation: Mechanism

Nemoto, T.; Ohshima, T.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 2725–2732.

Shibasaki Epoxidation: Stereoselectivity Model

Tosakai, S.-Y.; Horiuchi, Y.; Nemoto, T.; Ohshima, T.; Shibasaki, M. Chem. Eur. J. 2004, 10, 1527–1544.

Shibasaki Epoxidation: Esters

Kakei, H.; Tsuji, R.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 8962–8963.

Context Dependent

`R4

Few Examples

Phase-Transfer Epoxidations: Lead References

Zhang, F.-Y.; Corey, E. J. *Org. Lett.* **1999**, *1*, 1287–4832.1290. Lygo, B.; To, D. C. M. *Tetrahedron Lett.* **2001**, *42*, 1343–1346.

Ooi, T.; Ohara, D.; Tamura, M.; Maruoka, K. *J. Am. Chem. Soc.* **2004**, *126*, 6844–6845.

Amine-Catalyzed Epoxidations: Lead References

Lattanzi, A. Org. Lett. 2005, 7, 2579–2582.

Oxaziridine-Catalyzed Epoxidations: Lead References

Imminium-Catalyzed Epoxidations: Lead References

Marigo, M.; Franzén, J.; Poulsen, T. B.; Zhung, W.; Jørgensen, K. A. *J. Am. Chem. Soc.* **2005**, *127*, 6964–6965.

Lee, S.; MacMillan, D. W. C. Tetrahedron **2006**, *62*, 11413–11424.

Sulfur Ylide-Catalyzed Epoxidations: Lead References

Aggarwal, V. K. et al. J. Am. Chem. Soc. 2003, 125, 10926–10940.

Aggarwal, V. K. Acc. Chem. Res. 2004, 37, 611–620.

Also see: Winn, C. L.; Bellanie, B.; Goodman, J. M.; Tetrahedron Lett. 2002, 43,, 5427-5430.

Davoust, M.; Brière, J.-F.; Jaffrès, P.-A.; Metzner, P. J. Org. Chem. 2005, 70, 4166–4169.

Hydrolytic Kinetic Resolution of Terminal Epoxides

Schaus, S. E; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. *J. Am. Chem. Soc.* **2002**, *124*, 1307–1315.

For an improved monomer catalyst, see: Nielsen, L. P. C.; Stevenson, C. P.; Blackmond, D. G.; Jacobsen, E. N. *J. Am. Chem. Soc.* **2004**, *126*, 1360–1362.

For a highly active oligomeric catalyst, see: White, D. E.; Jacobsen, E. N. Tetrahedron: Asymmetry 2003, 14, 3633–3638.