

$\begin{array}{c} \underset{A \in CO_{2}H}{\overset{Me}{\longrightarrow}} & \underset{h \in B}{\overset{Me}{\rightarrow}} & \underset{h \in CO_{2}H}{\overset{Me}{\rightarrow}} & \underset{h \in B}{\overset{Me}{\rightarrow}} & \underset{H \in B}$	$\begin{array}{c} \underset{l}{\overset{\text{Me}}{\underset{l}{\text{co}_{2}\text{H}}}{\overset{\text{Me}}{\underset{l}{\text{migh ee}}}} & \underset{l}{\overset{\text{Me}}{\underset{l}{\text{migh ee}}} \\ $	AMDase (arylmalo	onate decarboxylase)	Opposite o	enantiomeric series?
Dhta, J. Mol. Catal. B: Enzym. 2007, 45, 15-20. Dhta, Chem. Commun. 2005, 877-879. Bioenzymatic Protonation by Decarboxylases AMDase (aryImalonate decarboxylase) Opposite enantiomeric series? $Me \atop CO_2H \xrightarrow{Me} Ar \underset{CO_2H}{} \longrightarrow Me \atop Kap racemase \underset{CO_2H}{} \longrightarrow Me \atop Kap racemase \atop CO_2H} \longrightarrow Me \atop Kap racemase \underset{CO_2H}{} \longrightarrow Me \atop Kap racemase \atop CO_2H} \longrightarrow Me \atop Kap racemase \atop CO_2H} \longrightarrow Me \atop Kap racemase \atop Kap racemas \atop Kap racemas \atop Kap racemas \atop Kap racemase$	Dita, J. Mol. Catal. B: Enzym. 2007, 45, 15-20. Dita, Chem. Commun. 2005, 877-879. Bioenzymatic Protonation by Decarboxylases AMDase (aryImalonate decarboxylase) Opposite enantiomeric series? $\stackrel{Me}{=} \begin{pmatrix} M_{CO_2H} & M_{Dase} & f_{+} f_{+}^{+} f_{+} \\ high ee \end{pmatrix}$ $\stackrel{Me}{=} \begin{pmatrix} M_{CO_2H} & f_{+} f_{+} f_{+} \\ high ee \end{pmatrix}$ AMDase was found to be homologous to well-studied racemases! Glu racemase Maleate isomerase Maleate isomerase Maleate isomerase $\stackrel{mo}{=} S \ L \ M \ M \ T \ S \ L \ M \ S \ T \ S \ L \ M \ S \ T \ S \ L \ M \ S \ S \ S \ S \ S \ S \ S \ S \ S$	Ar CO ₂ H	MDase Ar CO ₂ H high ee	Ar CO ₂ H ····	? Ar H high ee
Dhta, J. Mol. Catal. B: Enzym. 2007, 45, 15-20. Dhta, Chem. Commun. 2005, 877-879. Bioenzymatic Protonation by Decarboxylases AMDase (arylmalonate decarboxylase) Amplite = Amplite = Amplit	Dita, J. Mol. Catal. B: Enzym. 2007, 45, 15-20. Dita, Chem. Commun. 2005, 877-879. Bioenzymatic Protonation by Decarboxylases AMDase (arylmalonate decarboxylase) $Me \leftarrow CO_{2H} \longrightarrow MDase \leftarrow Me \leftarrow Ar \leftarrow CO_{2H} \longrightarrow CO_$				
Dita, J. Mol. Catal. B: Enzym. 2007, 45, 15-20. Dita, Chem. Commun. 2005, 877-879. Bioenzymatic Protonation by Decarboxylases AMDase (arylmalonate decarboxylase) AHDase (arylmalonate decarboxylase) AHDase (arylmalonate decarboxylase) $AHDase (arylmalonate decarboxylase)AHDase (arylmalonate decarboxylase) AHDase (arylmalonate decarboxylase)AHDase ($	Dita, J. Mol. Catal. B: Enzym. 2007, 45, 15-20. Dita, Chem. Commun. 2005, 877-879. Bioenzymatic Protonation by Decarboxylases AMDase (arylmalonate decarboxylase) fighter for the cost of the				
Bioenzymatic Protonation by DecarboxylasesAMDase (aryImalonate decarboxylase)Opposite enantiomeric series? $M_{e} \leftarrow CO_{2}H$ $AMDase$ $M_{e} \leftarrow M_{r} \leftarrow CO_{2}H$ $M_{e} \leftarrow CO_{2}H$ $M_{e} \leftarrow M_{r} \leftarrow M_$	Bioenzymatic Protonation by DecarboxylasesAMDase (arylmalonate decarboxylase)Opposite enantiomeric series? $M = \begin{pmatrix} M = \\ CO_2 H \end{pmatrix}$ $M = \begin{pmatrix} M = \\ F \\ CO_2 H \end{pmatrix}$ $M = \begin{pmatrix} M = \\ CO_2 H \end{pmatrix}$ $M = \begin{pmatrix} M = \\ CO_2 H \end{pmatrix}$ $M = \begin{pmatrix} M = \\ F \\ CO_2 H \end{pmatrix}$ $M = \begin{pmatrix} M = $				
$\begin{array}{c} \underset{Ar}{\overset{Me}{\underset{CO_{2}H}{\longrightarrow}}}{\overset{Me}{\underset{CO_{2}H}{\longrightarrow}}} & \underset{Ar}{\overset{Me}{\underset{CO_{2}H}{\longrightarrow}}} & \underset{Ar}{\overset{Me}{\underset{CO_{2}H}{\longrightarrow}}} & \underset{Ar}{\overset{Me}{\underset{CO_{2}H}{\longrightarrow}}} & \underset{Ar}{\overset{Me}{\underset{CO_{2}H}{\longrightarrow}}} & \underset{Ar}{\overset{me}{\underset{CO_{2}H}{\longrightarrow}}} & \underset{Ar}{\overset{me}{\underset{CO_{2}H}{\longrightarrow}}} & \underset{High ee}{\overset{me}{\underset{High ee}{\longrightarrow}}} & \underset{High ee}{\overset{me}{\underset{High ee}{\overset{me}{\underset{High ee}{\longrightarrow}}} & \underset{High ee}{\overset{me}{\underset{High ee}{\overset{me}{\underset{High ee}{\longrightarrow}}} & \underset{High ee}{\overset{me}{\underset{High ee}{\overset{me}{\underset{High ee}{\overset{me}{\underset{High ee}{\underset{High ee}{\overset{me}{\underset{High ee}{\overset{me}{\underset{High ee}{\overset{me}{\underset{High ee}{\overset{me}{\underset{High ee}{\overset{me}{\underset{High ee}{\overset{me}{\underset{High ee}{\overset{me}{\underset{High ee}{\overset{me}{\underset{High ee}{\overset{me}{\underset{High ee}{\underset{High ee}{\underset{High ee}{\overset{me}{\underset{High ee}{\underset{High ee}{\underset{High ee}{\overset{me}{\underset{High ee}{\underset{High ee}{\underset{High ee}{\underset{High ee}{\underset{High ee}{\underset{High ee}{\underset{High ee}{\underset{High ee}{\underset{High ee}{\underset{High ee}{Hig$	$\begin{array}{c} \underset{Ar}{\text{Me}} \\ \underset{CO_{2}H}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Ar}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Ar}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Ar}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Ar}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Ar}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Ar}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Ar}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Ar}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Ar}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Ar}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Ar}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{\text{High ee}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{Migh ee}{\text{High ee}} \\ \underset{Migh ee}{ \end{array} \\ \end{array} \\ \begin{array}{d} \underset{Migh ee}{ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{d} \underset{Migh ee}{ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{d} \underset{Migh ee}{ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{d} \underset{Migh ee}{ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{d} \underset{Migh ee}{ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{d} \underset{Migh ee}{ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{d} $	Dhta, <i>J. Mol. Catal. B: Enz</i> Dhta, <i>Chem. Commun.</i> 20	rym. 2007 , <i>45</i> , 15-20. 05 , 877-879.		
AMDase was found to be homologous to well-studied racemases! Glu racemase Asp racemase Maleate isomerase AMDase V V A V L T A Y A A MDase C N T A I M G C N T A I L G C L V A L S A G T S L L L S 74 C T H F T E L C Racemases C C C C C C C C C C C C C C C C C C	AMDase was found to be homologous to well-studied racemases! Glu racemase V V A C N T A I M G C T H F Cys188 is essential for AMDase Asp racemase V L T C N T A I L G C C T E L Cys188 is essential for AMDase Maleate isomerase A Y A C L V A L S A C C C Q M Racemases contain additional Cys7 AMDase S L M T S L L L S T 88 T 88 T 88	Ohta, J. Mol. Catal. B: Enz Ohta, Chem. Commun. 200 Bioenz,y AMDase (aryImalo	<i>rym.</i> 2007, <i>45</i> , 15-20. 05, 877-879. <i>matic Protonat</i> onate decarboxylase)	<i>ion by Dec</i> Opposite e	arboxylases
Glu racemase V V A C N T A I M G C T H F Cys188 is essential for AMDase Asp racemase V L T C N T A I L G C T E L Cys188 is essential for AMDase Maleate isomerase A Y A C L V A L S A C C Q M Racemases contain additional Cys7 AMDase 74 188 188 188 C	Glu racemase V V A C N T A I M G C T H F Cys188 is essential for AMDase Asp racemase V L T C N T A I L G C T E L Cys188 is essential for AMDase Maleate isomerase A Y A C L V A L S A C V Q M Racemases contain additional Cys7 AMDase 74 188 188 188 188	whta, J. Mol. Catal. B: Enz whta, Chem. Commun. 20 Bioenzy AMDase (arylmalo $Me \qquad AN Ar \leftarrow CO_2H \longrightarrow$	nym. 2007, 45, 15-20. 05, 877-879. matic Protonat onate decarboxylase) Mase Ar CO ₂ H high ee	tion by Dec Opposite c $Ar \leftarrow CO_2H \cdots$	enantiomeric series? $2 \xrightarrow{?}{} \xrightarrow{Me}{} \xrightarrow{Me}{} \xrightarrow{H}{} $
		hta, J. Mol. Catal. B: Enz hta, Chem. Commun. 20 Bioenzy AMDase (arylmalo $Ar \leftarrow CO_2H \longrightarrow AN$ AMDase was found	to be homologous to well-s	tudied racemases!	enantiomeric series? $2 \xrightarrow{?}{} \xrightarrow{Me}{} \xrightarrow{Me}{} \xrightarrow{High ee}{} \xrightarrow{High ee}{}$
		Dhta, J. Mol. Catal. B: Enz Dhta, Chem. Commun. 20 BioenzyAMDase (arylmalo AMDase (arylmalo $AMDase was found$ AMDase was found Glu racemase Asp racemase Maleate isomerase AMDase	tym. 2007, 45, 15-20. 05, 877-879. matic Protonat phate decarboxylase) $M_{Dase} \qquad M_{e}$ M_{CO_2H} high ee to be homologous to well-s $\dots \vee \vee \vee A = C = N = A + \dots + M = G$ $\dots \vee \vee \vee A = C = N = A + \dots + M = M = M$ $\dots \vee \vee \vee A = C = N = A + \dots + M = M = M$ $\dots \vee \vee \vee A = C = N = A + \dots + M = M = M$ $\dots \otimes A = M = G = T = S = \dots + L = S = M$	tudied racemases! $ \begin{array}{c} $	enantiomeric series? Prime Prime

Ohta, J. Mol. Catal. B: Enzym. 2007, 45, 15-20. Ohta, Chem. Commun. 2005, 877-879.

1,2 addition

C-X cleavage

1,4 addition

Yamamoto, J. Am. Chem. Soc. 2008, 130, 9246-9247.

Rh-Catalyzed Conjugate Addition-Protonation

Coupling of dehydroalanines and potassium (trifluoro)organoborates (achiral proton source and chiral enolate)

Genet, Darses, Angew. Chem. Int. Ed. 2004, 43, 719-723. Genet, Darses, J. Am. Chem. Soc. 2008, 130, 6159-6159.

Genet, Darses, Angew. Chem. Int. Ed. **2004**, 43, 719-723. Genet, Darses, J. Am. Chem. Soc. **2008**, 130, 6159-6159.

Ar-H

R'OH

R"O₂C

NHP

R"O₂C⁻ Genet, Darses, *Angew. Chem. Int. Ed.* **2004**, *43*, 719-723. Genet, Darses, *J. Am. Chem. Soc.* **2008**, *130*, 6159-6159.

R"0

chiral enolate

O Rh

when (*S*)-BINOL, (*R*)-BINOL, or *rac*-BINOL is used as proton source, same ee is observed

R'OH = guaiacol

P = protecting group

Rh-Catalyzed Conjugate Addition-Protonation

Coupling of dehydroalanines and potassium (trifluoro)organoborates (achiral proton source and chiral enolate)

migratory

insertion

organosilanes or other organoborane derivatives give low conversion or ee organostannanes can be used with this method

Genet, Darses, Angew. Chem. Int. Ed. 2004, 43, 719-723. Genet, Darses, J. Am. Chem. Soc. 2008, 130, 6159-6159.

Rh-Catalyzed Conjugate Addition-Protonation

Deuterium labeling experiments

$\overset{NHAc}{\underset{CO_2Me}{\overset{+}}} +$	ArBF₃K	[Rh(cod) ₂]PF ₆ (3 mol%) (S)-BINAP (6.6 mol%) proton source toluene, 110 °C	Ph D NHAC CO ₂ Me 2	
substrate	proton source	e overall yield (%)	D incorporation (%)	ee (%)
1	D ₂ O	96	100	10
1	guaiacol- <i>d</i> 1	86	28	90
1- <i>d</i> 1	guaiacol	93	41	90

D₂O gives rapid and quantitative protonation

D incorporation with deuterated proton source is low

D incorporation with deuterated substrate suggests that amide proton is involved in mechanism

→ Perhaps Rh-catalyzed isomerization can explain these results and poor reaction with N-H to N-Me substitution

Genet, Darses, Angew. Chem. Int. Ed. 2004, 43, 719-723. Genet, Darses, J. Am. Chem. Soc. 2008, 130, 6159-6159.

Rh-Catalyzed Conjugate Addition-Protonation

Revised mechanism

Fehr, Angew. Chem. Int. Ed. 2007, 146, 7119-7121.

Vedejs, J. Am. Chem. Soc. 2000, 122, 4602-4607.

Chiral Aniline-Catalyzed Protonation

Li-amide catalyzed deracemization of bulky amide enolates (chiral enolate-proton source aggregate)

With stoichiometric diamine as proton source: changing *catalyst* aniline NHMe \rightarrow NMe₂, 4% ee changing *catalyst* piperidine NH \rightarrow NMe, < 5% ee

Both nitrogens are needed for lithium chelate in chiral enolate-proton source aggregate

Vedejs, J. Org. Chem. **1998**, *63*, 2792-2793. Vedejs, J. Am. Chem. Soc. **2000**, *122*, 4602-4607.

Chiral Aniline-Catalyzed Protonation

Li-amide catalyzed deracemization of bulky amide enolates (chiral enolate-proton source aggregate)

Catalyst (5 mol%) PhCH₂CO₂t-Bu (2 equiv) 94% ee Cl Catalyst

With stoichiometric diamine as proton source: changing *catalyst* aniline NHMe \rightarrow NMe₂, 4% ee changing *catalyst* piperidine NH \rightarrow NMe, < 5% ee

Proposed mechanism

Vedejs, J. Org. Chem. **1998**, *63*, 2792-2793. Vedejs, J. Am. Chem. Soc. **2000**, *122*, 4602-4607. Both nitrogens are needed for lithium chelate in chiral enolate-proton source aggregate

Li-amide catalyzed deracemization of bulky amide enolates (chiral enolate-proton source aggregate)

With stoichiometric diamine as proton source: changing *catalyst* aniline NHMe \rightarrow NMe₂, 4% ee changing *catalyst* piperidine NH \rightarrow NMe, < 5% ee

Both nitrogens are needed for lithium chelate in chiral enolate-proton source aggregate

Vedejs, J. Org. Chem. **1998**, 63, 2792-2793. Vedejs, J. Am. Chem. Soc. **2000**, 122, 4602-4607.

Proposed mechanism

Chiral Aniline-Catalyzed Protonation

Li-amide catalyzed deracemization of bulky amide enolates (chiral enolate-proton source aggregate)

With stoichiometric diamine as proton source: changing *catalyst* aniline NHMe \rightarrow NMe₂, 4% ee changing *catalyst* piperidine NH \rightarrow NMe, < 5% ee Both nitrogens are needed for lithium chelate in chiral enolate-proton source aggregate

Enolate Geometry and Enantioselectivity

Deprotonation of ketones can give a mixture of E and Z isomers... but does it matter?

Duhamel, Tetrahedron: Asymmetry 2004, 15, 3253-3691.

Challenges in Enantioselective Protonation

Protonation is a conceptually simple reaction, but catalytic enantioselective methods are challenging for many reasons:

Broad substrate scope and general methods can be elusive

-newly-generated chirality can be sensitive to reaction conditions

-moving beyond cyclic substrates and controlling enolate geometry in acyclic cases

-complex aggregate interactions difficult to predict

-relative reaction rates between multiple catalytic cycles

-difficult to verify the presence of reactive intermediates

Extensive screening is often needed to find the right conditions

-matching of chiral and achiral proton donors for effective coupling needs to consider pKA and sterics

-finding suitable ligand sterics and electronics to provide optimal chiral environment

-temperature can be a very important parameter

-solvent effects can affect protonation

