

### Axially chiral bidentate P,N-ligands Syntheses and applications in asymmetric catalysis

Me















### First attempt towards a BINAP P,N analogue



Biaryl coupling via P(V)-directed ortho lithiation



Brown, J. Org. Chem. 1991, 56, 6803-6809.





Brown, Tetrahedron: Asymmetry 1992, 3, 17-20.

### Resolution of $(\pm)$ -1



· Isolated complex 3 as a 1:1 mixture of diastereomers

• However, on standing in acetone solution, one diastereomer becomes predominant (4:1)

 $\cdot$  Ligand 1 must be epimerizing within complex via dissociation of isoquinoline nitrogen and subsequent rotation about the biaryl bond

Brown, Tetrahedron: Asymmetry 1992, 3, 17-20.





Construction of biaryl via Pd-catalyzed cross coupling



### Resolution of $(\pm)$ -QUINAP



Brown, Tetrahedron: Asymmetry 1993, 4, 743-756.

### Resolution of $(\pm)$ -QUINAP





- Formation of chelate ring requires distortion from ideal bond angles
- Vector of N-Pd bond out of isoquinoline ring plane (≈ 24°)
- Inter-aryl dihedral angle = 65°, similar to BINAP





· Enantiomerically pure compound does not racemize appreciably on heating to 65 °C for 24h

Brown, Tetrahedron: Asymmetry 1993, 4, 743-756.

| Ph    | Ph<br>OAc<br>6                                           | Catalytic<br>Testing QUI<br>$C_3H_5$ )Cl] $_2$ (1 mol%<br>L (2.5 mol%)<br>CH $_2$ (CO $_2$ Me) $_2$<br>BSA, CH $_2$ Cl $_2$<br>(99% yield) | c ally<br>NAP's st | elic alkylat<br>tereoinducing ab<br>Ph<br>Ph<br>+<br>Ph<br>CH(CO<br>99% ee<br>Pf | iON<br>pility<br>L :<br>2 <b>Me)</b> 2<br>altz, <i>Angew</i> . ( | = , , , , , , , , , , , , , , , , , , , |
|-------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|
| Ph    | Ph<br>OAc<br>6                                           | C <sub>3</sub> H <sub>5</sub> )( <i>S</i> )-QUINAP]<br>(2 mol%)<br>nucleophile<br>solvent                                                  | BF₄<br>→►          | Ph<br>CH(CO<br>(R)-7                                                             | <sub>2</sub> Me) <sub>2</sub>                                    |                                         |
| entry | nucleophile                                              | solvent                                                                                                                                    | T (°C)             | additive                                                                         | % ee                                                             | •                                       |
| 1     | CH <sub>2</sub> (CO <sub>2</sub> Me) <sub>2</sub><br>BSA | THF                                                                                                                                        | 20                 | none                                                                             | 75                                                               | BSA = OTMS                              |
| 2     | CH <sub>2</sub> (CO <sub>2</sub> Me) <sub>2</sub><br>BSA | CH <sub>2</sub> Cl <sub>2</sub>                                                                                                            | 20                 | none                                                                             | 76                                                               | TMSN                                    |
| 3     | CH <sub>2</sub> (CO <sub>2</sub> Me) <sub>2</sub><br>BSA | CH <sub>3</sub> CN                                                                                                                         | 20                 | none                                                                             | 78                                                               |                                         |
| 4     | NaCH(CO <sub>2</sub> Me) <sub>2</sub>                    | CH <sub>2</sub> Cl <sub>2</sub>                                                                                                            | 20                 | none                                                                             | 75                                                               |                                         |
| 5     | NaCH(CO <sub>2</sub> Me) <sub>2</sub>                    | CH <sub>3</sub> CN                                                                                                                         | 20                 | none                                                                             | 78                                                               |                                         |
| 6     | NaCH(CO <sub>2</sub> Me) <sub>2</sub>                    | CH <sub>2</sub> Cl <sub>2</sub>                                                                                                            | 20                 | 15-crown-5                                                                       | 90                                                               |                                         |
| 7     | LiCH(CO <sub>2</sub> Me) <sub>2</sub>                    | CH <sub>2</sub> Cl <sub>2</sub>                                                                                                            | 20                 | 15-crown-5                                                                       | 73                                                               | (S)-QUIINAP                             |
| 8     | NaCH(CO <sub>2</sub> Me) <sub>2</sub>                    | neat<br>15-crown-5                                                                                                                         | 20                 | 15-crown-5                                                                       | 92                                                               |                                         |
| 9     | NaCH(CO <sub>2</sub> Me) <sub>2</sub>                    | CH <sub>3</sub> CN                                                                                                                         | 20                 | 15-crown-5                                                                       | 95                                                               |                                         |
| 10    | NaCH(CO <sub>2</sub> Me) <sub>2</sub>                    | CH₃CN                                                                                                                                      | -13                | 15-crown-5                                                                       | 98.2<br>(95% yield)                                              |                                         |

Brown, Tetrahedron, 1994, 50, 4493-4506.

#### Catalytic allylic alkylation A model transition state: rationalizing stereoinduction

#### 1. NMR studies and rate of reaction suggest nucleophile attacks trans to P



- Major diastereomers of allylpalladium complexes of (R)-QUINAP determined by NMR analysis
- Major product has malonate bonded to less substituted terminus
- If reactive allyl terminus must be trans to P, then unfavorable equilibrium is necessary for A
- 2. Assume nucleophilic attack on allyl occurs via a late transition state



Attack trans to P in a product like geometry engenders steric interactions between H<sub>3</sub> of isoquinoline and phenyl group of allyl moiety
 Brown, *Tetrahedron* **1994**, *50*, 4493-4506.

### Increased steric demand: PHENAP



Brown, Tetrahedron: Asymmetry 1995, 6, 2597-2610.

### Resolution of PHENAP



Brown, Tetrahedron: Asymmetry 1995, 6, 2597-2610.

#### Catalytic allylic alkylation PHENAP vs QUINAP

Ph

NMR studies reveal PHENAP exhibits higher diasteroselectivity on complexation

| entry | ligand | solvent                         | major:minor |
|-------|--------|---------------------------------|-------------|
| 1     | QUINAP | CDCI <sub>3</sub>               | 2:1         |
| 2     | PHENAP | CDCI <sub>3</sub>               | 10:1        |
| 3     | QUINAP | CD <sub>2</sub> Cl <sub>2</sub> | 6:1         |
| 4     | PHENAP | CD <sub>2</sub> Cl <sub>2</sub> | 20:1        |



Brown, Tetrahedron: Asymmetry 1995, 6, 2597-2610.



| entry          | reactant | catalyst       | % yield | % ee | configuration |
|----------------|----------|----------------|---------|------|---------------|
| 1              |          | ( <i>S</i> )-9 | 75      | 91.5 | S             |
| 2 <sup>a</sup> |          | ( <i>S</i> )-9 | 75      | 86   | S             |
| 3              | Me       | ( <i>S</i> )-9 | 80      | 95   | S             |
| 4              |          | ( <i>S</i> )-9 | 78      | 96   | S             |
| 5              |          | ( <i>S</i> )-9 | 82      | 90   | S             |

<sup>a</sup> In a previous publication, 99% ee is claimed, but this result could not be reproduced.

Brown, Tetrahedron: Asymmetry 1995, 6, 2593-2596; Brown, Chem. Eur. J. 1999, 5, 1320-1330.



| entry          | reactant | catalyst                          | % yield  | % ee       | configuration | black = <i>QUINAP</i><br>blue = <i>PHENAP</i> |
|----------------|----------|-----------------------------------|----------|------------|---------------|-----------------------------------------------|
| 1              |          | ( <i>S</i> )-9<br>( <i>R</i> )-10 | 75<br>70 | 91.5<br>67 | S<br>R        |                                               |
| 2 <sup>a</sup> |          | ( <i>S</i> )-9<br>( <i>R</i> )-10 | 75<br>59 | 86<br>64   | S<br>R        |                                               |
| 3              | Me       | ( <i>S</i> )-9<br>( <i>R</i> )-10 | 80<br>60 | 95<br>91   | S<br>R        |                                               |
| 4              |          | ( <i>S</i> )-9<br>( <i>R</i> )-10 | 78<br>69 | 96<br>84   | S<br>R        |                                               |
| 5              |          | ( <i>S</i> )-9<br>( <i>R</i> )-10 | 82<br>57 | 90<br>74   | S<br>R        |                                               |

<sup>a</sup> In a previous publication, 99% ee is claimed, but this result could not be reproduced.

Brown, Tetrahedron: Asymmetry 1995, 6, 2593-2596; Brown, Chem. Eur. J. 1999, 5, 1320-1330.



• Resolution effected via complexation with di- $\mu$ -chloro-bis[(*R*)-dimethyl(1-phenethyl)aminato-C<sup>2</sup>, N]dipalladium

• ( $\pm$ )-15 and ( $\pm$ )-16 could not be resolved

Brown, Tetrahedron: Asymmetry 1997, 8, 3775-3784.





(R)-9 or (S)-14

#### Aryl groups with *electron-releasing* substituents

| entry | reactant          | catalyst                          | % yield  | % <i>sec</i> -OH <sup>a</sup> | % ee     | entry          | reactant          | catalyst                          | % yield  | % <i>sec</i> -OH <sup>a</sup> | % ee     |
|-------|-------------------|-----------------------------------|----------|-------------------------------|----------|----------------|-------------------|-----------------------------------|----------|-------------------------------|----------|
| 1     |                   | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 75<br>79 | 97<br>94                      | 89<br>88 | 5 <sup>b</sup> |                   | ( <i>R</i> )-9                    | 21       | 63                            | 77       |
| 2     | $\langle \rangle$ | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 81<br>80 | 97<br>92                      | 86<br>81 | 6<br>M         | le <sub>2</sub> N | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 55<br>67 | 97<br>96                      | 62<br>79 |
| 3     |                   | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 82<br>74 | 93<br>93                      | 92<br>90 | 7<br>N         | AeO               | ( <i>R</i> )-9                    | 82       | 96                            | 94       |
| 4     |                   | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 78<br>81 | 95<br>97                      | 94<br>93 | 8<br>E         |                   | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 82<br>72 | 96<br>91                      | 94<br>78 |

<sup>a</sup> Remainder primary alcohol

<sup>b</sup> 5% excess ligand





(R)-9 or (S)-14

# OTf or BF<sub>4</sub>

#### Aryl groups with *electron-releasing* substituents

| entry | reactant          | catalyst                          | % yield  | % <i>sec</i> -OH <sup>a</sup> | % ee                  | entry          | reactant          | catalyst                          | % yield  | % <i>sec</i> -OH <sup>a</sup> | % ee                  |
|-------|-------------------|-----------------------------------|----------|-------------------------------|-----------------------|----------------|-------------------|-----------------------------------|----------|-------------------------------|-----------------------|
| 1     |                   | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 75<br>79 | 97<br>94                      | <mark>89</mark><br>88 | 5 <sup>b</sup> |                   | ( <i>R</i> )-9                    | 21       | 63                            | 77                    |
| 2     | $\langle \rangle$ | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 81<br>80 | 97<br>92                      | <mark>86</mark><br>81 | 6<br>M         | le <sub>2</sub> N | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 55<br>67 | 97<br>96                      | 62<br>79              |
| 3     |                   | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 82<br>74 | 93<br>93                      | <mark>92</mark><br>90 | 7<br>N         | AeO               | ( <i>R</i> )-9                    | 82       | 96                            | 94                    |
| 4     |                   | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 78<br>81 | 95<br>97                      | <mark>94</mark><br>93 | 8              |                   | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 82<br>72 | 96<br>91                      | <mark>94</mark><br>78 |

<sup>a</sup> Remainder primary alcohol

<sup>b</sup> 5% excess ligand



#### Aryl groups with electron-withdrawing substituents

| entry   | reactant  | catalyst                          | % yield  | % <i>sec</i> -OH <sup>a</sup> | % ee     | entry          | reactant         | catalyst                          | % yield  | % <i>sec</i> -OH <sup>a</sup> | % ee     |
|---------|-----------|-----------------------------------|----------|-------------------------------|----------|----------------|------------------|-----------------------------------|----------|-------------------------------|----------|
| 1<br>F  |           | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 77<br>77 | 96<br>92                      | 80<br>75 | 5 <sup>a</sup> |                  | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 59<br>74 | 96<br>93                      | 55<br>69 |
| 2       | F         | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 72<br>80 | 97<br>95                      | 67<br>77 | 6              | F <sub>3</sub> C | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 81<br>82 | 95<br>92                      | 45<br>74 |
| 3<br>Ci | $\square$ | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 82<br>78 | 96<br>94                      | 78<br>82 | 7 F            |                  | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 81<br>76 | 95<br>97                      | 37<br>83 |
| 4 CI    |           | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 82<br>75 | 97<br>95                      | 63<br>89 | 8              | CF3              | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 81<br>82 | 98<br>97                      | 66<br>83 |

<sup>a</sup> Remainder primary alcohol



#### Aryl groups with electron-withdrawing substituents

| entry   | reactant  | catalyst                          | % yield  | % <i>sec</i> -OH <sup>a</sup> | % ee                  | entry | reactant         | catalyst                          | % yield  | % <i>sec</i> -OH <sup>a</sup> | % ee                  |
|---------|-----------|-----------------------------------|----------|-------------------------------|-----------------------|-------|------------------|-----------------------------------|----------|-------------------------------|-----------------------|
| 1<br>F  |           | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 77<br>77 | 96<br>92                      | <mark>80</mark><br>75 | 5     | CI               | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 59<br>74 | 96<br>93                      | 55<br><mark>69</mark> |
| 2       | F         | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 72<br>80 | 97<br>95                      | 67<br>77              | 6     | F <sub>3</sub> C | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 81<br>82 | 95<br>92                      | 45<br>74              |
| 3<br>Ci | $\square$ | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 82<br>78 | 96<br>94                      | 78<br>82              | 7     | F <sub>3</sub> C | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 81<br>76 | 95<br>97                      | 37<br>83              |
| 4 CI    |           | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 82<br>75 | 97<br>95                      | 63<br>89              | 8     | CF3              | ( <i>R</i> )-9<br>( <i>S</i> )-14 | 81<br>82 | 98<br>97                      | 66<br>83              |

<sup>a</sup> Remainder primary alcohol



#### $\beta$ -substituted vinylarenes

| entry    | reactant   | catalyst       | % yield | % <i>sec</i> -OH <sup>a</sup> | % ee | entry | reactant | catalyst       | % yield | % <i>sec</i> -OH <sup>a</sup> | % ee |
|----------|------------|----------------|---------|-------------------------------|------|-------|----------|----------------|---------|-------------------------------|------|
| 1        |            | ( <i>R</i> )-9 | 80      | 99                            | 93   | 5     |          | ( <i>R</i> )-9 | 78      | 99                            | 96   |
| 2        | $\bigcirc$ | ( <i>R</i> )-9 | 80      | 99                            | 95   | 6     |          | ( <i>R</i> )-9 | 82      | 96                            | 90   |
| 3        | Ph         | ( <i>R</i> )-9 | 86      |                               | 91   | 7     |          | ( <i>R</i> )-9 | 80      | 99                            | 86   |
| 4<br>MeC |            | ( <i>R</i> )-9 | 84      | 99                            | 97   | 8     |          | ( <i>R</i> )-9 | 64      | 96                            | 66   |

<sup>a</sup> Remainder primary alcohol





#### Asymmetric hydroboration Model for enantioselectivity

Same configurational relationship between L and product holds for QUINAP and BINAP



a) Intermediate in the preferred pathway; increasingly favored as styrene is more electron-rich

b) Disfavored pathway; more probable with electron-poor styrenes

• In square-planar Pt complexes electron-rich styrenes bind more strongly *trans* to pyridine than electron-poor analogues

• Trend in enantioselectivity (overall higher ee's for electron-rich alkenes) can potentially be explained by a competition between the two pathways



Brown, Tetrahedron 1997, 53, 4035-4050.



| Quinazol           | linap |
|--------------------|-------|
| <i>Design prin</i> | ciple |







limiting factor



| Quinazolinap     | ) |
|------------------|---|
| Design principle |   |



Guiry, *Tetrahedron* **1999**, *55*, 3061-3070.



Guiry, Tetrahedron 1999, 55, 3061-3070.



• Same behavior as (R)-PHENAP

Binding via P only

Guiry, Tetrahedron: Asymmetry 1999, 10, 2797-2807.



#### Asymmetric hydroboration





| R + H-B | 1. catalyst (1 mol%)<br>THF, 0 ℃        | OH<br>R |
|---------|-----------------------------------------|---------|
|         | 2. H <sub>2</sub> O <sub>2</sub> , NaOH |         |

2-phenyl-Quinazolinap

Asymmetric hydroboration



<sup>a</sup> Remainder primary alcohol. <sup>b</sup> T = 25 °C

Guiry, Chem. Commun. 2000, 1333-1334.



<sup>a</sup> Remainder primary alcohol. <sup>b</sup> T = 25 °C

Guiry, Chem. Commun. 2000, 1333-1334.



Guiry, J. Org. Chem. 2004, 69, 6572-6589.



Guiry, J. Org. Chem. 2004, 69, 6572-6589.

R



Guiry, J. Org. Chem. 2004, 69, 6572-6589.

### Altering the electronic nature



### Resolution and application



· Possible hemi-labile nature of the substituent might hinder progress and stereochemical outcome of reaction

Guiry, Tetrahedron 2005, 61, 9808-9821.







Quinazox Asymmetric allylic alkylation

| entry | ligand                      | base  | % yield | % ee            |
|-------|-----------------------------|-------|---------|-----------------|
| 1     | ( <i>R</i> )-L <sub>1</sub> | LiOAc | > 95    | 81 ( <i>R</i> ) |
| 2     | ( <i>R</i> )-L <sub>1</sub> | КОАс  | > 95    | 55 ( <i>R</i> ) |
| 3     | ( <i>S</i> )-L <sub>1</sub> | LiOAc | > 95    | 58 ( <i>S</i> ) |
| 4     | ( <i>S</i> )-L <sub>1</sub> | КОАс  | > 95    | 15 ( <i>S</i> ) |
| 5     | ( <i>R</i> )-L <sub>2</sub> | LiOAc | > 95    | 60 ( <i>R</i> ) |
| 6     | ( <i>R</i> )-L <sub>2</sub> | КОАс  | > 95    | 7 ( <i>S</i> )  |
| 7     | ( <i>S</i> )-L <sub>2</sub> | LiOAc | 88      | 39 ( <i>S</i> ) |
| 8     | ( <i>S</i> )-L <sub>2</sub> | KOAc  | > 95    | 55 ( <i>R</i> ) |





Guiry, Org. Lett. 2006, 8, 5109-5112.

### Less common 2-substituents



Guiry, Eur. J. Org. Chem. 2008, 5055-5066.

### Different aryl groups



### Different aryl groups



# Expanding the scope of reactions $\beta$ -borylation of $\alpha,\beta$ -unsaturated esters

| $\sim$ | CuCl (2 mol%)<br>NaO <i>t</i> -Bu (4 mol%) |            |
|--------|--------------------------------------------|------------|
| OR     | L (4 mol%)                                 | · · · · OR |
|        | B <sub>2</sub> Pin <sub>2</sub> , MeOH     |            |
|        | THF, rt                                    |            |

| entry | R  | ligand | % conversion | % ee | entry | R            | ligand | % conversion | % ee |
|-------|----|--------|--------------|------|-------|--------------|--------|--------------|------|
| 1     | Ме | 1      | 100          | 50   | 10    | Et           | 4      | 98           | 38   |
| 2     | Ме | 2      | 95           | 20   | 11    | Et           | 5      | 99           | 12   |
| 3     | Ме | 3      | 65           | 51   | 12    | Et           | 6      | 82           | 15   |
| 4     | Ме | 4      | 100          | 40   | 13    | <i>i</i> -Bu | 1      | 100          | 79   |
| 5     | Ме | 5      | 100          | 25   | 14    | <i>i</i> -Bu | 2      | 100          | 35   |
| 6     | Ме | 6      | 71           | 13   | 15    | <i>i</i> -Bu | 3      | 100          | 42   |
| 7     | Et | 1      | 100          | 72   | 16    | <i>i</i> -Bu | 4      | 23           | 48   |
| 8     | Et | 2      | 100          | 34   | 17    | <i>i</i> -Bu | 5      | 100          | 20   |
| 9     | Et | 3      | 75           | 40   | 18    | <i>i</i> -Bu | 6      | 26           | 20   |

CI









Guiry, Org. Biomol. Chem. 2009, 7, 2520-2524.



Carreira, Angew. Chem. Int. Ed. 2004, 43, 5971-5973.

**PINAP** Epimerization studies

| HN Ph<br>HN Ph<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>(S)- <i>N</i> -PINAP | reflux<br>solvent                | HN Ph $HN Ph$ $Ph$ $Ph$ $Ph$ $S)$ | HN Ph<br>HN Ph<br>Ph<br>PPh <sub>2</sub><br>( <i>R</i> ) |
|---------------------------------------------------------------------------|----------------------------------|-----------------------------------|----------------------------------------------------------|
| Time (h)                                                                  | <i>p</i> -xylene<br>(bp: 138 °C) | toluene<br>(bp: 111 °C)           | benzene<br>(bp: 80 °C)                                   |
| 4                                                                         | 1:1                              | 3:1                               | >98:2                                                    |
| 8                                                                         |                                  | 2:1                               | >98:2                                                    |
| 20                                                                        |                                  | 1:1                               | >98:2                                                    |

Ratio monitored by <sup>1</sup>H NMR spectroscopy

• Calculated half life  $t_{1/2}$  at 65 °C is more than 25 days

Carreira, Bull. Chem. Soc. Jpn. 2007, 80, 1635-1657.

### Testing PINAP



Azomethine cycloaddition



Carreira, Angew. Chem. Int. Ed. 2004, 43, 5971-5973.

#### Critical role of the covalently bound chiral group Catalytic, enantioselective, conjugate alkyne addition



Diastereomeric pairs give very different ee's

• Suggests critical role for chiral amine group (matched/mismatched)

• Underscores PINAP as a modular scaffold (amenable to steric and electronic changes)

Carreira, J. Am. Chem. Soc. 2005, 127, 9682-9683.

#### Critical role of the covalently bound chiral group Catalytic, enantioselective, conjugate alkyne addition



**Reaction scope** 

| entry | R                              | L (mol%) | % yield | % ee                 |
|-------|--------------------------------|----------|---------|----------------------|
| 1     | <i>i</i> -Pr                   | 10       | 94      | 95                   |
| 2     | C <sub>6</sub> H <sub>11</sub> | 10       | 81      | 94                   |
| 3     | <i>i</i> -Bu                   | 20       | 85      | 90                   |
| 4     | Et                             | 20       | 83      | 82                   |
| 5     | Ph                             | 20       | 64      | 83                   |
| 6     | <i>m</i> -tol                  | 20       | 87      | 90 (98) <sup>a</sup> |

<sup>a</sup> After one recrystallization from EtOAc

No stereoinduction from Na-(+)-ascorbate



Carreira, J. Am. Chem. Soc. 2005, 127, 9682-9683.

#### The vast world of axially chiral P,N-ligands An active area of research



Pfaltz, Angew. Chem. Int. Ed. 1998, 37, 323-325.

Kocovsky, J. Org. Chem. 1998, 63, 7738-7748.

#### The vast world of axially chiral P,N-ligands An active area of research





Cu-catalyzed conjugate addition 98% conversion, 92% ee





Allylic alkylation (BSA method) 82% yield, 92% ee, rt

Zhang, Angew. Chem. Int. Ed. 1999, 38, 3518-3521.

Ha, Tetrahedron: Asymmetry 2006, 17, 1688-1692.



Morimoto, Tetrahedron Lett. 2004, 45, 5717-5722.

Virgil, Tetrahedron Lett. 1999, 40, 1245-1248.

#### The vast world of axially chiral P,N-ligands An active area of research



95% yield, 97% ee





94% ee

Widhalm, Tetrahedron: Asymmetry **1998**, 9, 1073-1083.





NMe PPh<sub>2</sub>



Allylic alkylation (BSA method) 74% yield, 78% ee, -25 °C

Li, Tetrahedron: Asymmetry 2007, 18, 1043-1047.

Koga, *Tetrahedron Lett.* **1994**, *35*, 6689-6692.

### Stoltz approach towards QUINAP

Aryne acyl-alkylation/condensation



Stoltz, Org. Biomol. Chem. 2009, 7, 4960-4964.



**QUINAP** derivatives

### Concluding remarks

• A large and diverse range of heterobidentate axially chiral P,N-ligands have been designed and prepared.

• Their application in a variety of assymetric transformations demonstrate that excellent enantioselectivities, regioselectivities and reactivities can be achieved by their metal complexes.

• However, research in this area also highlights the difficulty in finding a universal ligand.

• There is a need for the tailoring of ligands within each transformation for each substrate used.