Strategies for the Asymmetric Synthesis of Tertiary Alcohols

Kimberly S. Petersen

Stoltz Group Literature Presentation

March 8th, 2010

8:30 PM 147 Noyes

aldol type reactions

Tertiary Alcohol Containing Natural Products

Strategies for the Asymmetric Synthesis of Tertiary Alcohols Challenges

-Kinetic resolution (*i.e. Stoltz Pd catalyzed oxidation*)
-Noyori asymmetric hydrogenation
-Enantioselective additions to aldehydes

-Many are commercially available

- -No oxidation of C-O possible for kinetic resolution
- -No hydrogenation of carbonyl possible
- -Ketones are less reactive

-Smaller steric and electron differences between prochiral carbons

Copper Catalyzed Enantioselective Aldol Reactions Additions of Enolsilanes to Pyruvate Esters

Evans, J. Am. Chem. Soc. 1999, 121, 686-699.

Copper Catalyzed Enantioselective Aldol Reactions Additions of Enolsilanes to Pyruvate Esters

Evans, J. Am. Chem. Soc. 1999, 121, 686-699.

Copper Catalyzed Enantioselective Aldol Reactions Additions of Enolsilanes to Pyruvate Esters Reaction Scope

entry	R	yield (%)	ee
1	Ме	96	99
2	Et	84	94
3	<i>i</i> -Bu	94	94
4	<i>i</i> -Pr	36	36

Evans, J. Am. Chem. Soc. 1999, 121, 686-699.

Copper Catalyzed Enantioselective NitroAldol Reaction

Et	0 − − − − − − − − − − − − −	MeNO ₂ pKa ~17	Me Me O I I N Cu I t-Bu 20 mol% Et ₃ N (20 mol% rt, 24 h	$ \xrightarrow{2^{+}} 2^{TfO^{-}} $ $ \xrightarrow{HO} R \\ HO R \\$
entry	R	yield(%)	ee	
1	Ме	95	92	
2	Et	73	87	
3	(CH ₂) ₂ Ph	47	77	-Nitromethane used as solvent
4	hexyl	91	93	and prenucleophile
5	but-3-enyl	97	94	-1.1 Tallo of Cu and Elgin childar
6	pent-4-enyl	92	94	
7	3-methylbutyl	90	94	
8	<i>i</i> -butyl	99	92	
9	Ph	81	86	
10	p-CIC ₆ H ₄	91	88	
11	<i>p</i> -NO ₂ C ₆ H ₄	99	93	
12	<i>p</i> -MeOC ₆ H ₄	68	57	Jørgensen, J. Org. Chem. 2002, 67, 4875-4881.

Copper Catalyzed Enantioselective Aldol Reactions Ketones

Shibasaki, J. Am. Chem. Soc. 2006, 128, 7164-7165.

Lewis Base Catalyzed Enantioselective Aldol Reactions

Denmark, J. Org. Chem. 2005, 70, 5235-5248.

Lewis Base Catalyzed Enantioselective Aldol Reactions

Lewis Base Catalyzed Enantioselective Aldol Reactions Substrate Scope

Denmark, J. Org. Chem. 2005, 70, 5235-5248.

Catalytic Asymmetric Aldol Reactions Summary

-Can give high yields and good enantioselectivities

-Usually use a prenucleophile

-Often need activated ketones

Asymmetric Addition of Diphenylzinc to Ketones

Asymmetric Addition of Diphenylzinc to Ketones

product arises from aldol/dehydration/conjugate addition

Asymmetric Addition of Diphenylzinc to Ketones

-Works best when R = aryl and R' = methyl (2-pentanone reacts in 74% yield and 36% ee)-Only more reactive diphenylzinc adds to ketones (dialkylzincs do not work)

Asymmetric Addition of Alkylzinc Reagents to Ketones Early Work

Yus, Tetrahedron 1998, 54, 5651-5666.

Asymmetric Addition of Alkylzinc Reagents to Ketones

- -Process is more general than previous reports
- -Generally high yields and enantioselectivies
- -Both simple and functionalized zinc reagents work
- -Reasonable reaction time
- -Low catalyst loading for more active substrates

Walsh, J. Org. Chem. 2005, 70, 448-455.

Asymmetric Addition of Alkylzinc Reagents to Ketones Catalyst

constrained geometry gives larger binding pocket to accommodate the bulky ketone

Walsh, *Synlett* **2004**, 749-760. Walsh, *J. Org. Chem.* **2005**, *70*, 448-455.

Asymmetric Addition of Alkylzinc Reagents to Acetophenone Derivatives

entry	substrate	mol% 1	time (h)	yield (%)	ee
1	X = H	2	29	71	96
2	X = 3-Me	10	12	82	99
3	X = 3-Me	2	24	78	99
4	X = 4-OMe	10	111	85	94
5	$X = 3-CF_3$	2	14	56	98
6	X = 2-Me	10	48	24	96

Asymmetric Addition of Alkylzinc Reagents to Conjugated Enones

entry	R	n	R'	time (h)	yield (%)	ee
1	Н	2	Et	19	75	52
2	Ph	2	Me	40	84	99
3	CH ₂ OTBS	2	Et	40	81	>99
4	CH ₃	1	Et	37	65	96
5	pentyl	1	Ме	40	62	99
6	H*	3*	Et	40	70	96

Walsh, J. Org. Chem. 2005, 70, 448-455.

Asymmetric Addition of Functionalized Dialkylzinc Reagents to Ketones Preparation of Reagents

Method A

Knochel, *J. Org. Chem.* **1992**, *57*, 1956-1958. Knochel, *J. Org. Chem.* **1996**, *61*, 8229-8243. Walsh, *J. Org. Chem.* **2005**, *70*, 448-455.

Asymmetric Addition of Functionalized Dialkylzinc Reagents to Ketones Preparation of Reagents

Method A

Knochel, *J. Org. Chem.* **1992**, *57*, 1956-1958. Knochel, *J. Org. Chem.* **1996**, *61*, 8229-8243. Walsh, *J. Org. Chem.* **2005**, *70*, 448-455.

Asymmetric Addition of Functionalized Dialkylzinc Reagents to Ketones

Results using Method A

	RI +	Et ₂ Zn 50-55 °C	R₂Zn	+ Etl	
entry	substrate	ZnR ₂	time (h)	yield (%)	ee (%)
1 2		ZnOct ₂ Zn((CH ₂) ₄ Cl) ₂	40 40	91 95	98 99
3		Zn((CH ₂) ₄ OPiv) ₂	40	58	96
4 5		ZnOct ₂ Zn((CH ₂) ₄ Cl) ₂	40 40	70 83	99 99
6 7 8		ZnOct ₂ Zn((CH ₂) ₄ Cl) ₂ Zn((CH ₂) ₄ OPiv) ₂	40 40 40	83 62 53	97 96 97
9	OTBS	ZnOct ₂	40	70	>99

Walsh, J. Org. Chem. 2005, 70, 448-455.

Asymmetric Addition of Functionalized Dialkylzinc Reagents to Ketones

Results using Method B

	1) HBEt ₂	→ BEt₂	2) Et ₂ Zn	B₂Zn + BEt₂	
	R" 1 equiv 0 °C	R" > -	2 equiv 0 °C		
entry	substrate	ZnR ₂	time (d)	yield (%)	ee (%)
1	Q	Zn((CH ₂) ₃ CHMe ₂) ₂	3	77	96
2		Zn((CH ₂) ₄ OTBS) ₂	3	89	98
3		Zn((CH ₂) ₄ OPiv) ₂	3	47	96
4		$Zn((CH_2)_5Br)_2$	3	89	96
5	O II	Zn((CH ₂) ₃ CHMe ₂) ₂	3	75	90
6		Zn((CH ₂) ₄ OTBS) ₂	5	52	98
7		$Zn((CH_2)_5Br)_2$	3	55	94
9		Zn((CH ₂) ₄ OPiv) ₂	3	88	87
	\sim 0		Walsl	n, <i>J. Org. Chem.</i> 2005,	<i>70</i> , 448-455.

Asymmetric Addition of Diorganozinc Reagents to Ketones Summary

-Reasonable substrate scope

- -Both alkyl and aryl zinc reagents work
- -Good yields and generally high enantioselectivity
- -1 Step process
- -Branched alkyl, vinyl and heteroaryl groups not accessible
- -Lack of commericially available diorganozinc reagents available (Synthesis of functionalized reagents seems tricky)

Enantiodivergent Synthesis of Tertiary Alcohols through Conversion of Chiral Secondary Alcohols

-2° Alcohols are easily accessed through known methods (Noyori hydrogenation, resolution, etc.)

-Potentially access either isomer through a "retention" or "inversion" event

Enantiodivergent Synthesis of Tertiary Alcohols through Conversion of Chiral Secondary Alcohols

Lithiation-Borylation of Chiral Secondary Carbamates

- -Deprotonation of carbamate
- -Addition of borane (inversion) or boronic ester (retention)
- -1,2-Metallate rearrangement
- -Oxidation

Lithiation-Borylation of (S)-1-Phenylethanol

Entry	Substrate	Migrating group, R	Borane/boronic ester	Product	Yield (%) (e.r., S:R)
1	Ph OCb*	Et	- ξ- BEt ₂	Et OH	91 (99:1)
3	Ph	<i>i</i> Pr	-§-B	Pr OH	91 (98:2)
5	Ph	nHex	-§-B	nHex OH	60 (98:2)

*Cb = *N*,*N*-diisopropylcarbamoyl (99:1 e.r.)

Lithiation-Borylation of (S)-1-Phenylethanol

Entry	Substrate	Migrating group, R	Borane/boronic ester	Product	Yield (%) (e.r., S:R)
1	OCb*	Et	-ई-BEt ₂	Et OH	91 (99:1)
2	OCb	Et	-§-B, 0, (Et, OH Ph	95 (1:99)
			-§-B		
4	OCb	<i>i</i> Pr	-§-B 0	Pr, OH	80 (4:96)
			-ξ-В		
6	OCb	<i>n</i> Hex	-§-B, 0	nHex OH	85 (4:96)
7	OCb	<i>c</i> Pr	-§-B, 0, (cPr. OH Ph	85 (3:97)
8	OCb Ph	vinyl	-§-B, 0, (Ph OH	75 (2:98)
9	Ph	allyl	-§-B,0,	Ph	95 (1:99)

*Cb = *N*,*N*-diisopropylcarbamoyl (99:1 e.r.)

Lithiation-Borylation of (S)-1-Indanol and (S)-1-Tetralol

Lithiation-Borylation of (S)-1-Indanol and (S)-1-Tetralol

Lithiation-Borylation of (S)-1-Indanol and (S)-1-Tetralol

Rationalization of Stereochemistry

Boronic Esters

Rationalization of Stereochemistry

Boronic Esters

Rationalization of Stereochemistry

Boronic Esters

Enantiodivergent Synthesis of Tertiary Alcohols through Conversion of Chiral Secondary Alcohols Summary

-High yields and enantioselectivies

-Good substrate scope within the migrating group (vinyl and heteroaryl group work fine)

-Limited to aryl ketones

-Can access either enantiomer of tertiary alcohol from the same chiral secondary alcohol

-3 Step process (1 pot)

Kinetic Resolution of Tertiary Alcohols using (1S,2R)-N-methylephedrine

Kinetic Resolution of Tertiary Alcohols Proposed Origin of Selectivity

Fagnou, Angew. Chem. Int. Ed. 2009, 8343-8347.

Kinetic Resolution of Tertiary Alcohols Using (1S,2R)-N-Methylephedrine Summary

-Good selectivities for select substrates

-50% yield maximum

-Not catalytic

Stategies for the Asymmetric Synthesis of Tertiary Alcohols Summary

aldol type reactions

- •Many strategies have been developed to allow for access of tertiary alcohols in good yields and enantiopurity
- •Most require some sort of specialized substrate and are not very general
- •Continued work will lead to further development

Copper Catalyzed Enantioselective NitroAldol Reaction

Rhodium Catalyzed Kinetic Resolution of Tertiary Homoallyl Alcohols

Rhodium Catalyzed Kinetic Resolution of Tertiary Homoallyl Alcohols

Hayashi, Org. Lett. 2008, 10, 1191-1193.

Rhodium Catalyzed Kinetic Resolution of Tertiary Homoallyl Alcohols

Asymmetric Addition of Diphenylzinc to Ketones Nonlinear Dependence of Product ee on catalyst ee

N to C Aryl Migration in Lithiated Carbamates to form Tertiary Alcohols

-N to C aryl transfer with inversion at the lithium-bearing center

-Theorectical studies suggest attack on aromatic ring is a significantly lower energy pathway than the expected 1,2acyl transfer

-THF and DMPU which they use as additives in the racemic version lower e.r.

Clayden, J. Am. Chem. Soc. 2009, 131, 3410-3411.

Enantioselective Preparation of Tertiary Alcohols by Copper-Mediated Diastereoselective Allylic $S_N 2$ ' Substitutions

Knochel, *Angew. Chem. Int. Ed.* **2005**, *44*, 4627-4631. Knochel, *Org. Lett.* **2003**, *5*, 2111.

Enantioselective Preparation of Tertiary Alcohols by Copper-Mediated Diastereoselective Allylic $S_N 2$ ' Substitutions

They have shown you can make these allylic quaternary centers with high almost complete transfer of chiral information

Knochel, Angew. Chem. Int. Ed. 2005, 44, 4627-4631.

Catalytic and Asymmetric Vinylogous Mukaiyama Reaction

Campagne, J. Am. Chem. Soc. 2005, 127, 7288-7289.

Catalytic and Asymmetric Vinylogous Mukaiyama Reaction

Campagne, J. Am. Chem. Soc. 2005, 127, 7288-7289.

Enantioselective Preparation of Tertiary Alcohols by Copper-Mediated Diastereoselective Allylic $S_N 2$ ' Substitutions

entry	alkene	intermediate y	yield (%	») ee (%)	product	yield (%)	ee (%)
1	Pent Me Ph Me	Pent Me Ph CHO	85	98	OH Pent Me	70	97
2	Et Me Pent Me	Et Me Pent CHO	63	96	OH Et····Pent Me	76	92
3	Et Me Hex Me	Et Me Hex CHO	65	98	OH Et:Hex	68	93
4	Et. Ph BnO Me	Et Ph BnO CHC	62)	99		³ⁿ 70	99
5	Pent Ph BnO Me	Pent Ph BnO CHC	66)	99	OH Pentu OF Ph	3n 77	98
6	BnO Me	BnO CHC	71)	99	OH Et····OF	3n ₉₃	96

Knochel, Angew. Chem. Int. Ed. 2005, 44, 4627-4631.

Enantioselective Preparation of Tertiary Alcohols by Copper-Mediated Diastereoselective Allylic S_N2' Substitutions Conclusions

-Access to certain tertiary alcohols that might not be available otherwise

-Good yields and high fidelity of enantiopurity of starting reagents

-3-Steps

-Requires synthesis of allylic pentafluorobenzoates