

# Outline

- Introduction of Phase-Transfer Catalysis : General Mechanism of Asymmetric PTC
- Asymmetric Alkylation
- Michael Addition
- Aldol Reaction
- Mannich Reaction
- Epoxidation
- Fluorination and Strecker Reaction



Strarks, J. Am. Chem. Soc. 1971, 93, 195–199.

# Generation of Reactive Onium Carbanion Species

Starks Extraction Mechanism



Makosza Interfacial Mechanism



| Formation of metal carbanion<br>at the interface without the PTC                                          |    |
|-----------------------------------------------------------------------------------------------------------|----|
| Extraction of the formed carbanion species from the interface into the organic phase by the action of PTC | he |
| ex) asymmetric alkylation                                                                                 |    |

Review: Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222-4266.

# General Mechanism for the Asymmetric Alkylation

Interfacial Mechanism



O'Donnell, Catalytic Asymmetric Syntheses, 2nd ed., Wiley-VCH, New York, 2000, chap. 10

## Mechanism for the Asymmetric Epoxidation

**Extraction Mechanism** 



Starks, J. Am. Chem. Soc. 1971, 93, 195–199.

# The Application of PTCs in Organometallic Chemistry

 $PhCH_{2}Br + CO + \swarrow_{2}NEt + MeOH \xrightarrow{NaCo(CO)_{4}} PhCH_{2}CO_{2}CH_{3} + \swarrow_{2}^{+}NHEt Br$ 

Phase-Tansfer-Catalyzed Carbonylation of Benzyl Bromide by Cobalt Tetracarbonyl Anion



#### Catalytic Oxidation: Ley Oxidation



Mechanism



Ley, *J.Chem. Soc., Chem. Commun.* **1987**, 1625–1627. Griffith, *Chem. Soc. Rev.* **1992**, *21*, 179–185.

#### Asymmetric Alkylation

Pioneering Studies by a Merk Research Group







Dolling, J. Am. Chem. Soc. 1984, 106, 446-447.

# Asymmetric Synthesis of $\alpha$ -Amino Acids

#### Monoalkylation of Schiff Bases Derived from Glycine



cinchoninium chloride

cinchonidinium chloride

O'Donnell, *J. Am. Chem. Soc.* **1989**, *111*, 2353–2355. O'Donnell, *Tetrahedron* **1994**, *50*, 4507–4518.

# Racemization Experiments on Monoalkylated Product



cinchonidinium chloride

organic soluble base

benzylated ammonium salt

O'Donnell, *Tetrahedron* **1994**, *50*, 4507–4518. O'Donnell, *J. Am. Chem. Soc.* **1988**, *110*, 8520–8525.

New Class of Cinchona Alkaloid Derived Catalysts



Lygo, *Tetrahedron Lett.* **1997**, *38*, 8595–8598. Corey, *J. Am. Chem. Soc.* **1997**, *119*, 12414–12415.

### Chiral Spiroammonium Salts



Maruoka, J. Am. Chem. Soc. 1999, 121, 6519-6520.

#### Fluoroaromatic Substituents on Catalysts



Effect of Aromatic Substituents (Ar)





Influence of Hydrogen Bonding in Catalysts









95%, 61% ee

94%, 96% ee

90%, 75% ee

95%, 92% ee

Jew, Park, Org. Lett. 2005, 7, 1129–1131.

#### Cinchona Derived Bis and Tris Ammonium Salts



Nájera, *Tetrahedron: Asymmetry* **2004**, *15*, 2603–2607. Siva, *Synthesis* **2005**, 2927–2933.

## Acceleration of Reaction Rate in PTC Alkylations



Maruoka, *Synlett* **2000**, *10*, 1500–1502. Maruoka, *Angew. Chem. Int. Ed.* **2005**, *44*, 625–628.

### *New C*<sub>2</sub>-*Symmetric Chiral Ammonium Salts*





Limitations: two different chiral binaphtyl moieties

Maruoka, Angew. Chem. Int. Ed. 2002, 41, 1551–1554.

- Easy modification of achiral and flexible biphenyl unit
- Simple chiral source

 $\begin{aligned} R^{1} &= \beta \text{-naphthyl (Np), } R^{2} = H: 85\%, 87\% \text{ ee [18 h]} \\ R^{1} &= 3,5\text{-Ph}_{2}C_{6}H_{3}, R^{2} = H \\ R^{1} &= 3,5\text{-Ph}_{2}C_{6}H_{3}, R^{2} = Ph \end{aligned}$ 

### Expected Conformational Interconversion



Maruoka, Angew. Chem. Int. Ed. 2002, 41, 1551–1554.

# Chiral Copper-Salen Complex



Belokon, *Tetrahedron* **2001**, *57*, 2491–2498.

#### Achiral Nickel Complex with Nobin as a PTC



Belokon, J. Am. Chem. Soc. 2003, 125, 12860-12871.

favorable

# Glycine Diphenylmethyl Amide Derived Schiff Base



Maruoka, Angew. Chem. Int. Ed. 2003, 42, 5868-5870.

CPME = cyclopentyl methyl ether



Maruoka, J. Am. Chem. Soc. 2005, 127, 5073-5083.

#### Pd-Catalyzed Allylation with the Chiral PTC



Takemoto, J. Org. Chem. 2002, 67, 7418-7423.

## Pd-Catalyzed Allylation with the Chiral PTC



Takemoto, *Org. Lett.* **2001**, *3*, 3329–3331. Takemoto, *J. Org. Chem.* **2002**, *67*, 7418–7423.

## Representative Catalysts in the Alkylation



Review: Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222-4266.

# Asymmetric Syntheses of Biologically Active Compounds



Maruoka, J. Am. Chem. Soc. 2003, 125, 5139–5151.

# Asymmetric Syntheses of Biologically Active Compounds

Asymmetric Synthesis of Isoquinoline Derivatives



Asymmetric Synthesis of levobupivacaine



Maruoka, *Synthesis* **2001**, 1716–1718. Ramachandran, *Tetrahedron Lett.* **2005**, *46*, 19–21.

### Asymmetric Syntheses of Bengamides and Antofine

Asymmetric Synthesis of Bengamides B, E, and Z



## One-Pot, Double Alkylation of the Aldimine Schiff Base





Maruoka, J. Am. Chem. Soc. 2000, 122, 5228-5229.

## Alkylation of Peptides Activated as Schiff Bases



### The First Successful Michael Addition

**Chiral Crown Ethers** 



Cram, J. Chem. Soc. Chem. Commun. **1981**, 625–628. Tõke, *Tetrahedron* **1998**, *54*, 213–222.

# Michael Addition of Tetralone and Total Synthesis of (+)-Triptoquinone A



Shishido, J. Org. Chem. 1994, 59, 406-414.

# Asymmetric Michael Addition of Diethyl Malonate and Malononitrile to Chalcone

#### **Dual-Functioning Chiral Phase-Transfer Catalyst**

|   | 0             | CO₂R | cat. (3                                      | 3 mol%)                | O Ph<br>↓ ↓ | CO.B              |
|---|---------------|------|----------------------------------------------|------------------------|-------------|-------------------|
| P | h Ph CO       | CO₂R | K <sub>2</sub> CO <sub>3</sub> (<br>toluene, | 10 mol%)<br>0 °C, 24 h |             | ;0 <sub>2</sub> R |
|   | catalyst      |      | R                                            | % yiel                 | d % ee      |                   |
|   | OH-ammonium   |      | Ме                                           | 99                     | 84          |                   |
|   | bronnide      |      | Et                                           | 99                     | 90          |                   |
|   |               |      | Bn                                           | 99                     | 61          |                   |
|   |               |      | <i>i</i> -Pr                                 | 99                     | 74          |                   |
| _ |               |      | <i>t</i> -Bu                                 | NR                     |             |                   |
|   | ammonium bron | nide | Et                                           | 98                     | 15          |                   |









Maruoka, Org. Lett. 2005, 7, 3195-3197.

#### Use of Organic-Soluble Base BEMP



#### New Phase-Transfer Catalysts

#### Preparation of Pentanidium Chloride: New Catalyst



#### Synthesis of Enantiopure Pyrrolidine Derivatives



#### Synthesis of Enantiopure Phosphonic Analogues of (S)-Proline



Tan, J. Am. Chem. Soc. 2011, 133, 2828-2831.

# Chiral Phosphonium Salts as Chiral PTCs



Maruoka, Angew. Chem. Int. Ed. 2009, 48, 4559-4561.



Maruoka, J. Am. Chem. Soc. 2009, 131, 16620-16621.

core structure of natural alkaloids

#### Aldol Reactions

First Example of a Phase-Transfer-Catalyzed Direct Asymmetric Aldol Reaction



 $\mathbf{R} = \mathbf{P}\mathbf{h}$ 

α-Np

*t*Bu

: 91%, 56% ee

: 86%, 79% ee

: 83%, 78% ee

Miller, *Tetrahedron* **1991**, *47*, 5367–5378. Maruoka, *Angew. Chem. Int. Ed.* **2002**, *41*, 4542–4544. Arai, Nishida, *Tetrahedron Lett.* **2004**, *45*, 1023–1026.

# Asymmetric Mannich Reactions

#### Mannich Approach to a Nitrogen Analogue of Dialkyl Tartrate



#### Asymmetric Mannich Addition of 3-Aryloxindole



Maruoka, Org. Lett. 2004, 6, 2397-2399. Maruoka, Angew. Chem. Int. Ed. 2009, 48, 4559-4561. 99%, >99:1 *dr*, 88% ee

,Bu Bu

# Chiral Phase-Transfer Catalyst with Dual Functions



X-Ray Structure of the Ammonium-PF<sub>6</sub>





- The biphenyl and binaphthyl subunits are nearly perpendicular.
- → Creating a chiral reaction cavity
- *PF*<sub>6</sub> ion is located inside the cavity being surrounded by diphenylphenyl groups.

 $\rightarrow$  Properly positioning hypochlorite ion in the cavity

• OH is situated right above N and sticks to PF<sub>6</sub> ion.

→ Bringing enones inside the cavity resulting an ideal proximity to hypochlorite

(a) CPK



Maruoka, J. Am. Chem. Soc. 2004, 126, 6844-6845.

### Fluorination and Strecker Reaction





 $Ar = 3,5-(CF_3)_2-C_6H_3$ X = O or S

#### First Phase-Transfer-Catalyzed Enantioselective Strecker Reaction



Maruoka, J. Am. Chem. Soc. 2006, 128, 2548–2549.



 $Ar = p - CF_3 - C_6H_4$ 

#### Summary



### Acknowledgement

Prof. Brian Stoltz

Prof. Sarah Reisman

Stoltz Group Reisman Group

#### Stability of the Onium Carbanion

**Hoffman Elimination** 



Nucleophilic Substitution



Stevens Rearrangement



# Asymmetric Epoxidation



Transformation of an  $\alpha$ , $\beta$ -Unsaturated Aldehyde to an  $\alpha$ , $\beta$ -Epoxy Ketone



Br

Arai, Shioiri, *Tetrahedron* **2002**, *58*, 1623–1630. Lygo, *Tetrahedron.* **1999**, *55*, 6289–6300. Lygo, *Chem. Commun.* **2002**, 2360–2361.