Demystifying X-ray Crystallography: A Historical and Practical Guide for Organic Chemists

Julie L. Hofstra Reisman Group Literature Seminar January 5, 2018

Motivation for the Topic

Outline

- I. Historical Context and Theory
 - When was X-ray crystallography developed?
 - What was the historical impact on organic chemistry?
- 2. Solving Structures with Modern X-ray Crystallographic Techniques
 - What exactly goes on in that black box?
- 3. Commonly Encountered Terminology for Organic Structures
 - What is a Flack parameter?
- 4. Resources at Caltech and Practical Crystallization Tips
 - What instruments do we have here?
 - How do I grow a crystal?
 - What are host-guest frameworks?

Historical Context and Theory

When was X-ray crystallography developed? What was the historical impact on organic chemistry?

Definition of a crystal: a material that has atoms arranged in an ordered, repeating pattern (unit cell) which can be extended by translation in three dimensions (crystal lattice)

Crystal systems: seven crystal systems

Symmetry elements:

Non-translational: inversion center, reflection, rotation, and rotation-inversion Translational: screw axis, glide plane (these cause systematic absences in X-ray diffraction)

7 crystal systems \rightarrow 14 Bravais lattices \rightarrow 32 point groups \rightarrow 230 space groups

Crystal System		Symmetry Metrics	Bravais Lattice		Groups Hermann-Mauguin
Triclinic	a a b	none $\alpha \leq \beta \leq \gamma$	Р	C ₁ ,C _i	1, 1
Monoclinic	$\beta \neq 90^{\circ}$ $a \neq c$ $\beta \neq c$ $\beta \neq c$	b is unique $\alpha = \gamma = 90^{\circ}$ $\beta \ge 90^{\circ}$	P, C	C_2, C_s, C_{2h}	2, <i>m</i> , 2/m
Orthorhombic		$\alpha = \beta = \gamma = 90^{\circ}$	P, C, I, F	$D_2, C_{2\nu} D_{2h}$	222, mm2, mmm
Tetragonal		a = b, c is unique $\alpha = \beta = \gamma = 90^{\circ}$	P, I	C ₄ , S ₄ , C _{4h} , D ₄ , C _{4v} D _{2d} , D _{4h}	4, 4, 4/m, 422, 4mm, 42m, 4/mmm
Trigonal/ Hexagonal		a = b, c is unique $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	P, R	$\begin{array}{c} C_3,S_6\;(C_{3i}),D_3,C_{3\nu}\\ D_{3d},C_6,C_{3h},C_{6h},D_6,\\ C_{6\nu}\;D_{3h},D_{6h} \end{array}$	3, 3̄, 32, 3m, 3̄m, 6, 6̄, 6/m, 622, 6mm, 6̄m2, 6/mmm
Cubic		a = b = c $\alpha = \beta = \gamma = 90^{\circ}$	P, I, F	T, T _d , T _h , O, O _h	23, m3̄, 432, 4̄3m, m3̄m

P=primitive; C=end-centered;I=body-centered;F=face-centered;R=rhombohedral

89

independent derivation of the 230 symmetry space groups

Artur Schöenflies

German mathematician specialized in the study of geometry published his book "Kristallsysteme und Kristallstruktur" in 1891

Evgraf Fedorov

Russian mathematician and crystallographer work went under-acknowledged during lifetime as it was not translated from Russian greatest work "Das Krystallreich" was published by students in 1920 following his death

There is a difference between chirality of molecules and chirality of crystals!

Achiral molecules:

- centrosymmetric achiral (most common)
- non-centrosymmetric achiral or chiral (d-quartz and l-quartz)

Chiral molecules (enantiomeric mixture):

twinned crystals

spontaneous resolution

Chiral molecules (enantiopure):

- ALWAYS crystallizes in a non-centrosymmetric chiral crystal (absolute configuration)
- achiral theoretically possible but has NEVER been seen in nature

La Coupe du Roi French for "The Royal Cut"

Flack. H. D. Helv. Chem. Acta 2003, 86, 905; Thompson, A. L.; Watkins, D. J Tetrahedron: Asymmetry 2009, 20, 712.

1895 First detection of X-rays

Wilhelm C. Röntgen

German mechanical engineer and physicist Refused to take patents, wanted to benefit society First medical image he took was of his wife's hand Awarded with the Nobel Prize in 1901 IUPAC named element 111, roentgenium, after him in 2004

1912 Discovery of X-ray diffraction by crystals

Max von Laue

German physicist won the Nobel Prize in 1914 Ewald studied refraction of isotropic resonators with crystal plates under Sommerfeld.

He sought out advice from Laue, who was unaware of crystal lattice, regarding some calculations.

Interview in 1959:

Paul P. Ewald

Arnold Sommerfeld

"I told him, "I can't tell you what the distance is, because the distance is very small, certainly, but we don't know whether there are atoms, or molecules in the parts of the lattice, or whether there are groups of molecules, and without knowing that we don't know what the distance is." ... He was rather distracted, and asked a few times, "What happens if you take very much shorter waves than the light waves and if they pass through the crystal?"And I said, "This can be answered very simply because the formulae I have here are strict formulae...but I want to finish my thesis, and at present I am not interested in this." So I finished my thesis, I didn't get anything out of Laue — no help. I wrote up my thesis, and was glad to get rid of it."—P.P. Ewald

A few months later, Laue reported the X-ray diffraction by crystals conducted by two students, Knipping and Friedrich.

Ewald, P. P. Fifty Years of X-ray Diffraction 1962.

1912 Discovery of X-ray diffraction by crystals

Max von Laue

German physicist won the Nobel Prize in 1914 Ewald studied refraction of isotropic resonators with crystal plates under Sommerfeld.

He sought out advice from Laue, who was unaware of crystal lattice, regarding some calculations.

Paul P. Ewald

Arnold Sommerfeld

Autobiography in 1962:

"The history of the discovery of X-ray interference illustrates beautifully the value of scientific hypothesis. Many people irradiated crystals with X-rays before Friedrich and Knipping. However, their observations were limited to the directly transmitted ray which revealed nothing remarkable beyond the weakening produced by the crystal; they missed completely the less strong diffracted rays. It was the theory of the space lattice which provoked the idea of investigating the neighborhood of the direct ray. Of course the diffracted rays would eventually have been discovered as stronger and stronger X-ray tubes were developed; some accident would have pointed them up. But it is hard to guess when this might have happened, and we can certainly say that the theory of the space lattice was absolutely essential to account for their presence." –Max von Laue

Ewald, P. P. Fifty Years of X-ray Diffraction 1962.

1913

Published Bragg's Law, which describes scattering on a crystal lattice: $n\lambda = 2d\sin\theta$ British scientists; invented the X-ray spectrometer and studied X-ray emission spectroscopy Reported structures of NaCl, NaBr, KBr in 1913 (disproved covalent salt molecules) Shared the receipt of the Nobel Prize in 1915

A Simplified Theory of X-ray Diffraction

- Each crystal contains a lattice structure, this acts as a diffraction grating for the X-ray beam
- X-rays are suitable wavelength (order of magnitude as atom spacing)
- The location of the reflections depends on size and orientation of the unit cell
 - Reflections are labeled with indices (h, k, l)
 - We need to know the unit cell to use the right math
- The *intensity* of the reflections is a Fourier transform of the electron density
 - EVERY atom contributes to EVERY reflection
- To have the electron density map, we also need the *phases*
 - Phases are lost with this measurement!!
 - This is the crystallographic phase problem

How do we figure out the phases?

Used to be solved by hand, with iterative math (2D). Then computers were invented (3D)! (development in 1940's and generalized late 1950's)

Number of developments and attempts have been made to find better ways at determining the phases: Patterson method (**1934**) Direct methods, XS (**1953**) Intrinsic phasing, XT (commonly used today) A crystallographer considers the structure to be solved when the "lost phases" are "recovered" (i.e. appropriately estimated with a good model)

Early X-ray Crystal Structures of Organic Compounds

1913

W. H. Bragg and W. L. Bragg (diamond)

1923

R. G. Dickinson and A. L. Raymond (Caltech) H. J. Gonell and H. Mark (Berlin-Dahlem)

1928

K. Lonsdale

structural evidence of resonance and first to use Fourier analysis

hexamethylenetetramine

hexamethylbenzene

Early X-ray Crystal Structures of Organic Compounds

1935

J.M. Robertson (phthalocyanins)

first time a complex organic molecule was solved independently by crystallography

J. M. Bijvoet (strychnine)

first time crystallography decided between proposed structures

чH

1951

J. M. Bijvoet (absolute configuration)

used a method called anomalous dispersion (this happens to be what we still use today)

Robertson, J. M. W. J. Chem. Soc. **1935**, 615; Openshaw, H. T.; Robinson, R. *Nature* **1946**, *157*, 438; Robertson, J. H.; Beevers, C. A. Acta Cryst. **1951**, *4*, 270; Bokhoven, C.; Schoone, J. C.; Bijvoet, J. M. Acta Cryst. **1951**, *4*, 275; Bijvoet, J. M.; Peerdeman, A. F; van Bommel, A. J. *Nature* **1951**, 271.

strychnine

Early X-ray Crystal Structures of Organic Compounds

Dorothy Mary Crowfoot Hodgkin

British chemist who developed protein crystallography and won Nobel Prize in 1964

1944 – cholesteryl iodide
1949 – penicillin
1956 – vitamin B12
1971 – insulin (tertiary structure)

Carlisle, C. H.; Hodgkin, *Proc. Royal Soc. A* **1944**, *184*, 64; Crowfoot, D.; Bunn, C. W.; Rogers-Low, B. W.; Turner-Jones, A. Princeton University Press **1949**, *310*; D. C. Hodgkin, D. C.; Kamper, J.; Mackay, M.; Pickworth, J.; Trueblood, K. N.; White, J. G. *Nature* **1956**, *178*, 325;

Crystallography at Caltech

Roscoe Dickinson (first person to receive Ph.D. from Caltech, 1920)

became a professor and was an advisor to Linus Pauling Richard Bozorth (second Ph.D. from Caltech, also studied X-ray crystallography)

Linus Pauling (graduate student at Caltech and later returned as a professor) worked with Robert Corey (α -helix and β -sheet)

Numerous structures (e.g. glycine, alanine, serine, threonine, N-acetylglycine, β -glycylgycine, diketopiperazine (1939-1953)) which served as a basis for protein crystallography

1947 - IBM (Hollerith) operators at the Caltech Computing Center machine room

"Over the period of 44 years since 1917 about 350 papers on X-ray diffraction have been published from the Gates and Crellin Laboratories of Chemistry, representing the determination of the structure of about 350 crystals. Many American X-ray crystallographers received their training in the California Institute of Technology." –Linus Pauling

Nobel Prizes Awarded in X-ray Crystallography

YEAR	AREA	PEOPLE	DISCOVERY		
1901	Physics	W. C. Röntgen	Discovery of X-rays		
1914	Physics	M.Von Laue	X-ray diffraction		
1915	Physics	W. H. Bragg and W. L. Bragg	Bragg Law and crystal structure		
1917	Physics	C. G. Barkla	Characteristic radiation of elements		
1937	Physics	C. J. Davisson and G. Thompson	Electron diffraction		
1954	Chemistry	L. C. Pauling	Structure of complex substances		
1962	Chemistry	M. Perutz and J. C. Kendrew	Structures of Hemoglobin and Myoglobin		
1962	Medicine	J. D. Watson, F. H. C. Crick, and Maurice H. F. Wilkins	Structure of DNA		
1964	Chemistry	D. C. Hodgkin	Structure of vitamin BI2		
1972	Chemistry	C. B. Anfinsen	Protein Folding		
1976	Chemistry	W. N. Lipscomb	Structure of Boranes		
1985	Chemistry	H.A. Hauptman and J. Karle	Direct Methods		
1988	Chemistry	J. Deisenhofer, R. Huber, and H. Michel	Structure of bacteriorhodospin		
1994	Physics	C. Shull and N. Brockhouse	Neutron diffraction		
1996	Chemistry	R. Curl, H. Kroto, and R. Smalley	Structure of fullerene		
2009	Chemistry	V. Ramakrishnan, T.A. Steitz, and A. E. Yonath	Structure and function of ribosome		
2011	Chemistry	D. Shechtman	Discovery of quasicrystals		

Knowledge from X-ray Crystallography

Things we possibly take for granted, learned from X-ray crystallography:

- The nature of atomic bonding
 - ionic bonding, covalent bonding, metallic bonding
 - multiple bonds vs. single bonds; bond lengths
 - resonance
 - hydrogen bonding
 - exotic bonds (e.g. 2-electron-3-center bonds, multiple metal bonds)
- Molecular and extended structures
- Polymorphism and implications on materials' properties
 - inorganic solids
 - drugs
- Biological structures
 - DNA, enzymes, proteins, viruses, active sites

Natural Product Structural Revision

X-ray crystallography is not infallable! Natural products have been misassigned by X-ray crystallography.

revised structure (Gould et al., 1994 and Dmitrienko et al., 1994)

- Diazofluorene was misassigned as an *N*-cyanocarbazole
 - Typical misassignments have to do with atom identity,not connectivity
- More difficult when atoms are devoid of hydrogens (organic)
- Elements confused with neighboring atom on periodic table (closest e⁻ density)

- Structure and absolute configuration determined by X-ray
- Crystals not the best quality
- R-factor-ratio test

kinamycin C

(Omura et al., 1973)

- Feeding experiments indicated
 D-glucosamine part of biosynthesis
- Revised with new crystal

mitomycin A (van den Hende et al., 1967)

revised structure (Shirahata, et al., 1987)

Nicolaou, K. C.; Snyder, S. A. Angew. Chem. Int. Ed. 2005, 44, 1012.

X-ray Crystallography in One Slide

location: reciprocal lattice **intensity + phases:** electron density map

Solving Structures with Modern X-ray Crystallographic Techniques

What exactly goes on in that black box?

Similarities Between X-ray and NMR

NMR: a familiar friend

solution

parameters

Computer Programs to Solve Structures

- I. Apex
 - Collects and integrates data
- 2. XPREP
 - Space group determination
- 3. XT (or XS)
 - Structure solution program that takes a best guess at solving the data
- 4. Olex (or ShelXle)
 - Graphical interface that runs XL to to refine structures
 - Also used to label atoms and create final CIF file
- 5. Platon
 - Does a number of things to check refinement
- 6. Mercury (or Diamond)
 - Used to generate image of structure
- 7. XCIF
 - Used to generate the list of tables that goes in the supporting information

Instrument Design/Setup

Goniometer

Crystals are mounted on a loop in Paratone oil A cold stream of N₂, usually 100K, cools the sample and hardens the oil Crystal gets aligned in the center and is rotated throughout data collection K α wave: Cu λ = 1.54433 Å and Mo λ = 0.71354 Å

Video File and Crystal Sizing

Size: $0.15 \times 0.25 \times 0.25$ mm

Crystal Types:

rods

blocks

needles

plates

Raw Reflection Images

Reflections should appear as a random assortment of spots

No spots = no crystal

Amorphous solids will powder diffract:

Data Integration

🌾 APEX3 v2016.1-0 - User: (guest) - Sample: TEST2 - Licensed to Bruker Instrument User at California Inst. of Technology

Ы Integrate Images - #× .

 \times

£)	Sample	Instrument	Chart	Windows	Help	

Set Up / Evaluate	Sotup					
Collect Reduce Data	Starting Image Filename	Images Output Filename	Resolution Limit [Å]: 0.770			
0	1 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_01_0001.sfrm	99 C:\frames\guest\TEST2\work\cu_p17610_01.raw				
Ral	2 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_02_0001.sfm	90 C:\frames\guest\TEST2\work\cu_p17610_02.raw	Unit Cells:			
Y B	3 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_03_0001.sfm	ulie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_03_0001.sfm 114 C.\frames\guest\TEST2\work\cu_p17610_03.raw				
ntegrate Images	4 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_04_0001.sfm	114 C:\frames\guest\TEST2\work\cu_p17610_04.raw	b=11.79Å, β=90.00°, Orthorhombic c=21.81Å, γ=90.00°			
	5 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_05_0001.sfrm	76 C:\frames\guest\TEST2\work\cu_p17610_05.raw	□ C=21.81X, Y=90.00			
-	6 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_06_0001.sfrm	91 C:\frames\guest\TEST2\work\cu_p17610_06.raw				
Index Crystal	7 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_07_0001.sfrm	276 C:\frames\guest\TEST2\work\cu_p17610_07.raw				
Faces	8 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_08_0001.sfm	76 C:\frames\guest\TEST2\work\cu_p17610_08.raw				
	9 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_09_0001.sfm	106 C:\frames\guest\TEST2\work\cu_p17610_09.raw				
88	10 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_10_0001.sfm	114 C:\frames\guest\TEST2\work\cu_p17610_10.raw				
Scale	11 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_11_0001.sfrm	114 C:\frames\guest\TEST2\work\cu_p17610_11.raw				
	12 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_12_0001.sfrm	60 C:\frames\guest\TEST2\work\cu_p17610_12.raw				
	13 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_13_0001.sfrm	106 C:\frames\guest\TEST2\work\cu_p17610_13.raw				
Sul	14 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_14_0001.sfrm	99 C:\frames\guest\TEST2\work\cu_p17610_14.raw				
ntegrate Debye	15 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_15_0001.sfm	114 C:\frames\guest\TEST2\work\cu_p17610_15.raw				
Rings	16 C:\Users\Julie Hofstra\Documents\Xray Crystallography\p17610\cu_p17610_16_0001.sfrm	4 C:\frames\guest\TEST2\work\cu_p17610_16.raw				
-	17					
20	18					
Unwarp and	19					
Convert Images	20					
	21					
	22					
	23					
	24					
	25					
	26					
	27					
	28					
	29					
	30					
	31					
	32					
	33					
	34					
	35		Refinement Options			
	36		Nemenen Opdons			
	37		Integration Options			
	38					
	39		Find Runs			
	40		Invest Breed from East in a			
	41		Import Runs from Experiment			
	42					
Examine Data	43		Start Integration			
Report _			•			

Load all the frames (images) into Apex In this case, it is 1653 images!

Data Integration

¥ APEX3 v2016.1-0 - User: (guest) - Sample: TEST2 - Licensed to Bruker Instrument User at California Inst. of Technology

Apex integrates all the images to find location and intensity of reflections Typically the better the "average correlation coefficient" the better the structure

Absorption Correction

D

×

APEX3 v2016.1-0 - User: (guest) - Sample: TEST2 - Licensed to Bruker Instrument User at California Inst. of Technology

Data is scaled and refined

Corrects the intensity for the distance the X-rays have to travel through the crystal

Determine Space Group

Option A: FOM = 0.112 deg.ORTHORHOMBIC P-lattice R(sym) = 0.019 [46771 7.434 11.792 21.810 Cell: 90.00 89.93 90.09 Volume: 1911.98 Matrix: 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 Option B: FOM = 0.072 deg. MONOCLINIC R(sym) = 0.016 [29351 P-lattice Cell: 7.434 21.810 11.792 90.00 90.09 90.07 Volume: 1911.98 Matrix: 1.0000 0.0000 0.0000 0.0000 0.0000 -1.0000 0.0000 1.0000 0.0000 Option C: FOM = 0.086 deg.MONOCLINIC P-lattice R(sym) = 0.016 [28761 Cell: 21.810 7.434 11.792 90.00 90.07 89.91 Volume: 1911.98 Matrix: 1.0000 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 -1.0000 Option D: FOM = 0.112 deg. MONOCLINIC **P-lattice** R(sym) = 0.016 [29241 Cell: 11.792 7.434 21.810 89.93 90.00 90.09 Volume: 1911.98 Matrix: 0.0000 -1.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 -1.0000 Option E: FOM = 0.000 deg.TRICLINIC P-lattice R(sym) = 0.000 [01 11.792 89.91 Cell: 21.810 Volume: 1911.98 7.434 90.00 89.93 Matrix:-1.0000 0.0000 0.0000 0.0000 $0.0000 \quad 0.0000 \quad 0.0000 \quad -1.0000$ 1.0000 Option F retains original cell Select option [B]: A

Search for higher order metric symmetry

All options have low figure of merit (FOM) and low R(sym) XPREP picked B (lowest FOM) but better choice is A (orthorhombic)

increasing symmetry

Determine Space Group

```
[A] Triclinic, [M] Monoclinic, [O] Orthorhombic,
                                                   [T] Tetragonal,
[H] Trigonal/Hexagonal, [C] Cubic or
                                       [E] EXIT
Select option [0]:
Lattice exceptions: P
                          A
                                 в
                                        С
                                               I
                                                      F
                                                            Obv
                                                                   Rev
                                                                         A11
N (total) =
                               8685
                                      8761
                                             8791 13099
                                                          11652
                        8752
                    0
                                                                11682
                                                                       17506
                        8421
                                                                      16842
N (int>3sigma) =
                 0
                               8286
                                      8437
                                             8480 12572
                                                         11188
                                                                11260
Mean intensity =
                        32.1
                               33.8
                                                    32.7
                                                           33.4
                                                                  33.2
                                                                        33.2
                  0.0
                                      32.1
                                             32.5
                               19.2
                                      19.2
Mean int/sigma =
                        19.2
                                                                        19.3
                  0.0
                                             19.3
                                                    19.2
                                                           19.3
                                                                  19.4
Lattice type [P, A, B, C, I, F, O(obv.), R(rev. rhomb. on hex. axes)]
Select option [P]:
```

P = primitive cell; A, B, C = end-centered cells; I = body-centered cell;

F = face-centered cell; Obv = trigonal cell; Rev = hexagonal cell

Determine space group and lattice exceptions Looking for values where mean int/sigma is close to 0, so the answer here is P (primitive)

Determine Space Group

```
Mean [E*E-1] = 0.700 [expected .968 centrosym and .736 non-centrosym]
Systematic absence exceptions:
                    n--- 21---
                                            -n- -21-
        b - -
              C---
                                -C-
                                      -a-
                                                         --a
                                                               --b
                                                                     --n --21
        825
                    821
                           11
                                      423
              822
                                411
                                            410
                                                   17
                                                         257
                                                               258
                                                                     257
                                                                            26
Ν
              693
                    739
                            0
                                                    2
N I>3s 732
                                310
                                      354
                                            316
                                                         222
                                                               224
                                                                     218
                                                                             з
                                                  0.2
       49.6 47.9
                                                       56.8
                   43.6
                          0.1
                               43.2
                                     36.6
                                                             44.2
<1>
                                           48.1
                                                                    32.4
                                                                           0.2
<I/s> 17.7 16.6 17.9
                          0.9
                              13.9 15.9
                                           14.9
                                                  1.2
                                                       16.1
                                                             14.7 15.3
                                                                           1.5
Identical indices and Friedel opposites combined before calculating R(sym)
Option Space Group No. Type Axes CSD R(sym) N(eq)
                                                         Syst. Abs.
                                                                       CFOM
[A] P2(1)2(1)2(1) # 19 chiral
                                  1 5917 0.019
                                                   4677 1.5 / 13.9
                                                                       0.93
Select option [A]:
```

Look for systematic absences where <1/s> is close to 0, so here the answer is 21-., -21-, -21Combining all this information, we choose the space group (only one option: $P2_12_12_1$) We know the molecule is chiral, and this is a chiral space group which is a good sign

Determine Space Group

Resolution	#Data	#Theory	<pre>%Complete</pre>	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 3.63	36	37	97.3	3.32	283.41	44.55	0.0264	0.0210
3.63 - 2.30	86	87	98.9	6.18	156.55	59.11	0.0247	0.0159
2.30 - 1.80	115	115	100.0	7.03	103.78	60.37	0.0292	0.0154
1.80 - 1.54	120	120	100.0	7.14	55.68	55.08	0.0230	0.0160
1.54 - 1.39	125	125	100.0	6.88	32.71	43.03	0.0295	0.0188
1.39 - 1.28	123	123	100.0	8.31	37.74	52.24	0.0383	0.0165
1.28 - 1.20	119	119	100.0	12.87	39.70	67.99	0.0347	0.0126
1.20 - 1.14	116	116	100.0	10.69	35.23	64.95	0.0280	0.0134
1.14 - 1.09	107	107	100.0	9.00	28.56	56.40	0.0329	0.0169
1.09 - 1.04	134	134	100.0	9.87	26.43	59.73	0.0266	0.0142
1.04 - 1.00	121	. 121	100.0	9.48	18.69	56.79	0.0334	0.0152
1.00 - 0.97	119	119	100.0	8.87	15.75	55.15	0.0335	0.0155
0.97 - 0.94	117	117	100.0	8.56	10.29	47.06	0.0383	0.0172
0.94 - 0.91	136	136	100.0	6.88	10.90	45.64	0.0462	0.0186
0.91 - 0.89	109	109	100.0	6.72	10.14	46.75	0.0296	0.0177
0.89 - 0.87	110	110	100.0	6.64	7.97	44.94	0.0316	0.0184
0.87 - 0.85	120	120	100.0	5.78	10.57	46.15	0.0294	0.0179
0.85 - 0.83	133	133	100.0	5.61	9.60	45.67	0.0286	0.0195
0.83 - 0.81	152	154	98.7	4.38	8.42	38.48	0.0319	0.0217
0.81 - 0.80	70	75	93.3	3.48	9.43	41.08	0.0219	0.0227
0.80 - 0.79	106	123	86.2	2.13	7.29	32.57	0.0264	0.0279

The theoretical amount of data that could be collected for each resolution range is high Also good redundancies and high intensities

Program: XT

Data Solution

> This is where we estimate the phases Solve data set with XT

Data Solution

Setup: 0.111 secs

Trv	N(iter)	сс	R(weak)	CHEM	CFOM	best	Sig(min)	N(P1)	Vol/N
1			0.4998				1.779	• •	13.01
2							2.064	147	13.01
3	100	58.45	0.5338	0.3429	0.0508	0.0933	4.168	147	13.01
4	100	59.23	0.5376	0.2766	0.0547	0.0933	2.829	146	13.10
5	146	94.55	0.0726	1.0000	0.8730	0.8730	2.350	102	18.74
6	146	94.46	0.0741	1.0000	0.8706	0.8730	9.238	100	19.12
7	146	58.64	0.4967	0.3571	0.0897	0.8730	2.488	137	13.96
8	146	61.18	0.5067	0.4600	0.1051	0.8730	2.505	146	13.10
Struc Ø (Space	<pre>8 attempts, solution 5 selected with best CFOM = 0.8730, Alpha0 = 0.859 Structure solution: 1.671 secs 0 Centrosymmetric and 56 non-centrosymmetric space groups evaluated Space group determination: 1.018 secs</pre>								
		•	Orienta as in		• •		Lack_x F: 0.21 170		Formula th a C20 O5
0.120	0.05/ 0	0.002	as III	put	F2(1)2(1)2(1)	0.21 1/0	510_01	un_a 020 05
Assign elements and isotropic refinement 0.216 secs									
	+ XT finished at 20:03:22								
++++4	******	++++++	+++++++++++++++++++++++++++++++++++++++	******	++++++++	*******	+++++++++++++++++++++++++++++++++++++++	+++	

This is where we estimate the phases Solve data set with XT
Data Refinement

Recall: Olex is a graphical program to aid in data refinement

Opening OLEX shows the initial guess at the developing a model for the electron density map Atoms are shown without anisotropic displacement

Data Refinement in Olex

Anisotropy is added and atoms become non-spherical ellipsoids Represents 50% probability and includes 6 parameters for placement instead of 1

Data Refinement in Olex

Anisotropy is added and atoms become non-spherical ellipsoids Represents 50% probability

Data Refinement in Olex

Atoms are appropriately assigned

Too small = not heavy enough (more e⁻ density); Too large = assigned too heavy

Data Refinement in Olex

Atoms are appropriately assigned

Too small = not heavy enough (more e^- density); Too large = assigned too heavy

Data Refinement in Olex

Renumber the heavy atoms before adding in hydrogens Hydrogen atoms are named based on the carbon numbering

Data Refinement in Olex

Refine again and look at the Q peaks (indicates next level of missing electron density) Most of the Q peaks fall in hydrogen positions

Data Refinement in Olex

Add H atoms and refine again

Data Refinement in Olex

Add the H atoms the general "ADD Hs" tool couldn't figure out (here, alkenes)

Data Refinement in Olex

Refine structure and update molecular formula

Data Refinement in Olex

Molecular formula is fixed Most would consider this structure good enough for publication

Data Refinement in Olex

Organic crystal structures typically benefit from including an extinction coefficient All the remaining Q peaks move from empty space to the C–C bonds

Data Refinement in Olex

Assign absolute determination: typically AD (anomalous dispersion) Generate final CIF file, then DONE! R1 = 2.91% (very good structure)

CheckCIF

International Union of Crystallography (IUCR) sponsors an online website that checks and validates CIF files: https://checkcif.iucr.org/

Alert levels:

- A Most likely a serious problem, resolve or explain
- B A potentially serious problem, consider carefully
- C Check, ensure it is not caused by an omission or oversight
- G General information/check it is not something unexpected

PLAT420_ALERT_2_B D-H Without Acceptor 02B H2B	Please Check
Alert level C	
PLAT094 ALERT 2 C Ratio of Maximum / Minimum Residual Density	2.03 Report
PLAT414 ALERT 2 C Short Intra D-HH-X H2A H15E	1.99 Ang.
PLAT414 ALERT 2 C Short Intra D-HH-X H2B H16A	1.92 Ang.
$PLAI4I4_ALERI_2_C SHOLL IIICLA D=nn=X n2b n10A$	1.92 Ally.
Alert level G PLAT720 ALERT 4 G Number of Unusual/Non-Standard Labels	1.32 Ang. 16 Note
Alert level G	
Alert level G PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	16 Note
Alert level G PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels PLAT791_ALERT_4_G The Model has Chirality at C5A (Chiral SPGR)	16 Note S Verify

Generating Images

Olex: simplest image to obtain

Mercury: easy to use, can use depth cue

Diamond: favored by inorganic chemists, more complicated software

CYL View: designed for computational chemistry, removes aniostropic displacement

Nine major systems:

- 1. Bilbao Crystallographic Server (BCS)
- 2. Biological Macromolecule Crystallization Database (BMCD)
- 3. CRYSTMET
- 4. Cambridge Structural Database (CSD)
- 5. Inorganic Crystal Structure Database (ICSD)
- 6. Nucleic Acid Database (NDB)
- 7. The Pauling File
- 8. Protein Data Bank (PDB)
- 9. Powder Diffraction File (PDF)

The Cambridge Structural Database is "the world's most comprehensive and up-to-date database of crystal structures with over 900,000 curated entries" obtained by both X-ray and neutron diffraction

Cambridge Crystallographic Data Centre (**CCDC**) is an organization that compiles and maintains the CSD.

Submit your structures to the Cambridge Crystallographic Data Centre (CCDC)!

CIF files are easily deposited on the website, authors provide:

- CIF file
- Author names
- Email addresses
- Other info RE journal, etc. is not necessary (it will be inputted for you later)

Structures not referenced in publications 1 year after deposition will be made available to the public! Depositing structures should be the last thing you do before paper submission.

Structures will be assigned deposition numbers (basically an ID code), which is received by email, usually fairly quickly (approx. 10 min) with the new updated system.

Deposit Structures

Upload your data to the CCDC for inclusion in the Cambridge Structural Database

Access Structures

View and retrieve structures in the Cambridge Structural Database

Please draw your diagram or add a SMARTS string in the 'advanced' section below.

1	Simple Search	Structure Search	Unit Cell Search				
Search Complete - 60 Results Found		e - 60 Results Found		Go to WebCSD v1			
			100%	Modify Search New Search			
Results BEBGOF : (bis((S)-4-t-Butyl-4,5-dihydro-oxazol-2-ylphenyl)phenylphosphine-N,P)-(ŋ3-1,3-dimethylallyl)-palladium(ii)							
¥	Database Identifier	Deposition Number	hexafluorophosphate Space Group: P 2 ₁ (4), Cell: <i>a</i> 10.3152(13)Å <i>b</i> 13.5764(17)Å <i>c</i> 13.8415(18)Å, <i>α</i> 90° β 96.345(2)° γ 90°				
	BEBGOF	226113	3D viewer Chemical diagram	m			
	BEBGUL	226114					
	CUFQID	121673					
•	DATWOM	877759	🔆 🖌 🖌				
	EFUVUW	165323	and a start of the	But CH ₃			
	EFUWAD	165324					
	EFUWEH	165325		Pd"CH.			
•	EFUWIL	165326	A CARLES	Ph But F			
•	GEGYAS	101162					
•	GEGYIA	117325		O O			
•	HAQBUW	1172297	JSmol				
	HAQCAD	1172298	H Disorder (Menu Open -				
	HAQCEH	1172299					
•	HAQCIL	1172300	Style Labels Packing Measure Ball and Stick No Labels None None None 	View group symbols key			
	HUJBET	178466		• view group symbols key			

Commonly Encountered Terminology for Organic Structures

What is a Flack parameter?

Flack parameter: a factor used to determine absolute structure

"Absolute structure leads to absolute configuration. Absolute structure is a crystallographer's term and applies to non-centrosymmetric crystal structures. Absolute configuration is a chemist's term and refers to chiral molecules"

Number is:

Close to 0.0 – structure is correctly depicted in the displayed enantiomeric series

Close to 0.5 – structure is likely racemic or twinned

Close to 1.0 – structure is displayed in the opposite enantiomeric series

Examples: usually if $\mu < 0.10$, it is a reasonable value

Χ(μ)	X	μ	good?
0.12(5)	0.12	0.05	yes
0.23(12)	0.23	0.12	no $ ightarrow$ Flack value is high but due to refinement issues
0.05(3)	0.05	0.03	yes
0.05(7)	0.05	0.07	yes
0.017(2)	0.017	0.002	yes
0.0162(19)	0.0162	0.0019	yes
-0.15(8)	-0.I5	0.08	yes
-0.04(4)	-0.04	0.04	yes

Bijvoet-Pair analysis: an analysis of the Bijvoet (Friedel) pairs for the determination of absolute structure

Take away message: this is a different analysis than the Flack parameter which can be used when the certainty of the Flack parameter is not good enough to assign absolute structure

Data is analyzed in the program Platon

Bayesian Statistics: P3(true) – likelihood the absolute structure is correct P3(rac-twin) – likelihood the structure is a 50:50 inversion twin P3(false) – likelihood the structure should be inverted

Flack = 0.23(12)P3(true) = 0.977P3(rac-twin) = 0.023P3(false) = 0.2×10^{-13}

Crystal twinning: two (or more) separate crystals share some of the same crystal lattice points (i.e. you do not have a single crystal)

There are different types of twins:

- merohedral twins (hard to identify, appears to be a single crystal from diffraction data; can accidentally be solved in incorrect higher space group)

- non-merohedral twins (easier to identify)

A twinned crystal does not produce a simple diffraction pattern and can often be recognized by observing the raw diffraction data.

Crystal twinning: two (or more) separate crystals share some of the same crystal lattice points (i.e. you do not have a single crystal)

How do we fix this? Search for and apply twin laws.

Crystal twinning: two (or more) separate crystals share some of the same crystal lattice points (i.e. you do not have a single crystal)

How do we fix this? Search for and apply twin laws.

residual positive and negative density lies next to NiBr₂ atoms (suggests atoms are "wiggling" but were not further disordered)

Disorder: occurs when atoms in the unit cell adopt different orientations

Types: Positional disorder (same atoms occupy different sites) or substitutional disorder (different atoms occupy the same site)

Remember, data is averaged over SPACE and TIME. Small disorder can be left represented by atom size, larger differences should be split into parts

> Disordered ether solvent molecule (large atoms and residual electron density). In this case, unstable refinement when disordered.

DCM and MeCN occupy same space in the lattice.

Boronate group exists in three conformations (47%, 34%, 19%). Bond restraints were applied. Notice TMS group has slight rotational disorder.

Grow function: command in Olex to view packing arrangement Useful to view void spaces and hydrogen bonding between molecules

Resources at Caltech and Practical Crystallization Tips

What instruments do we have here? How do I grow a crystal? What are host-guest frameworks?

Caltech X-ray Crystallographic Facility (XRCF)

X-ray Laboratory, BI 110, x2741

Two instruments primarily used:

- I. D8 KAPPA APEX II
 - Mo radiation
 - good for large crystals (>0.15 mm)
 - can get absolute stereochemistry if there is a heavy atom
 - collection time 12-24 hr
- 2. D8 VENTURE Photon I 00 Dual I μ S
 - Dual Mo and Cu radiation
 - good for smaller crystals
 - <0.15 mm for Mo
 - <0.10 mm for Cu
 - can get absolute stereochemistry without heavy atoms using Cu
 - collection time <12 hr

Prior to 2018, files labeled A or P (e.g. P13544) Since 2018, new CPAD detectors, files labeled V or D

 Dr. Mike Takase
 Mr. Larry Henling

 BI I 16,x2734
 BI 128,x2735

Caltech X-ray Crystallographic Facility (XRCF)

Website: <u>http://www.its.caltech.edu/~xray/</u>

- Login to the website and add your name to 1) the X-ray Queue
 - Each group gets one user per cycle (inorganic uses instruments most, so any organic submissions usually get priority to run next)
- Print and fill out submission form 2)
 - Make sure to note absolute or relative configuration
 - Check "data collection" if your group • solves their own structures (\$250) or "complete structure solution" if your group needs full solution (\$500)
 - Truncated data collection for examination/connectivity/ID is \$150
- Bring sample and form to BI 110 3)

Are my crystals good enough? Just ask! High powered microscope + polarimeter

Sample Submission Form Precautions: Requester:* □ Toxic □ Moisture sensitive: □ Air sensitive □ Light sensitive: Compound ID: Date: \Box Save sample \Box Other: Other analyses preformed: PTA: Required if you have more than one or it has changed □ EA □ IR □ MS □ NMR □ X-Ray Phone:* Advisor: Analysis Requested: Email:* □ Unit cell determination □ Data collection □ Complete structure determination Minimum Data Quality Requested?* □ Absolute or □ Relative configuration □ Anything □ Connectivity □ Publication □ Other: Crystallization Solvents: All other solvents sample has come into contact with: Synthetic Route or Starting Materials Used: Unit cell of known compounds (include volume): Proposed Structure:* Labeling scheme optional. For Facility Use Only: Date Sample ID: Operator: Quality: Color: Morphology Exposure time Space group: □ Unit cell Collection Refinemen NC ID NI RD Billed: Comments: **Proposed Chemical Formula:***

Caltech X-Ray Crystallography Facility

Last Updated: February 1, 2016

Crystallization occurs when the concentration of a compound in solution is higher than its solubility

Often supersaturation must be reached in order to obtain crystals

Two steps: nucleation and growth

Nucleation can occur from dust particles or imperfections the glass. The less nucleation sites and the slower the crystal growth, the bigger the crystals will be.

Important things to remember:

- Growing crystals is an art form.
- Luck often plays an important role.
- The quality of the crystal structure is impacted by the quality of the crystal.
- Good crystals take time to grow! (expect 2-7 days so put them in a place where you can monitor them without disturbing the container)
- Size should be around 0.1-0.3 mm in each dimension.
- Once you have crystals, never remove them from the solvent
 - Solvent can incorporate into crystal lattice

I. Slow evaporation

As simple as it sounds. Dissolve your compound almost to saturation, transfer to clean container (filter solution through Kimwipe plug to remove particles), and cover (e.g. foil with holes,

septa with a needle). Sometimes you can let it slowly evaporate in the NMR tube.

Advantage: easy

Disadvantage: often requires a lot of material; better for polar compounds that are not extremely soluble or else can concentrate to an oil; crystals get stuck to walls of the container

2. Slow cooling

Standard recrystallization method. *Does not dissolve at r.t.*? Heat it up until dissolved and let it slowly cool down. *Does dissolve at r.t.*? Put it in the freezer to try and obtain crystals.

Advantage: easy

Disadvantage: often requires a lot of material; finding appropriate solvent conditions; if crystals are grown at cold temperature, indicate this on the sign-up form so they can remain in freezer until ready to be analyzed

3. Layer diffusion

Choose a binary solvent system that includes two solvents which mix well. The compound of interest should dissolve in one solvent (called the solvent) but not in the other (called the precipitant). Prepare a concentrated solution and have the precipitant solvent

on hand. In a vial, add the liquid with the higher specific density on the bottom and layer the liquid with the lower specific density on top. Over time, the layers will mix and crystals should form. The bottom layer can also be frozen before the top layer is added.

Advantage: works well for small amounts of material; can be easy to control variables Disadvantage: this method is slightly complicated and perfectly layering the two liquids can be difficult

4. Vapor diffusion

Choose a binary solvent system for two solvents that mix well. Prepare a concentrated solution of the compound and place inside an inner vial. The inner vial is placed in a larger vial with the

precipitant solvent and the system is sealed. Over time, the solvents will mix via vapor diffusion.

Advantage: works well for small amounts of material; very successful setup Disadvantage: finding two solvents can be difficult

Solvent		Solvent		Solvent	
Diethyl ether	34.6	Methanol	64.I	Acetonitrile	81.8
Pentane	36.1	Hexane	68.7	Heptane	98.4
Dichloromethane	40.7	Ethyl Acetate	77.I	Toluene	110
Acetone	56.5	Ethanol	78.4	Octane	125
Chloroform	61.3	Benzene	80.I		

Lower number solvent will diffuse into the higher number solvent

What if my compound isn't crystalline?

Chemical derivatization

- Protect alcohols or amines
 - ex. para-nitro benzoate groups or para-bromo benzoate groups
- Convert into an ion and form a salt
 - ex. deprotonate or protonate

Use co-crystals

- Numerous examples of co-crystals
- See review: Cryst. Growth Des. 2009, 9, 4212.
- Typically more useful for aromatic compounds
- Triphenylphosphine oxide can be a useful co-crystallant for proton donors

Clathrates (i.e. crystalline sponge)

- Pioneered by Makoto Fujita within the last decade
- Soak up non-crystalline material into an existing crystal lattice
- Can be successful on as little as 80 ng of material

(TPT)

Fujita, Nature Chemistry 2010: the beginnings of host/guest crystallography

Inokuma, Y.; Arai, T.; Fujita, M. Nature Chemistry **2010**, 2, 780.

Fujita, Nature 2013: use of similar Znl₂ framework to solve organic structures

"Six appropriate samples were selected and one of us (S.Y.) performed the trace-amount crystallography with only $\sim 5 \mu g$ of each sample and without any knowledge of the structures. In this blind test, three structures were fully determined from only the diffraction data (Fig. 3). The other three were initially flawed because of atom misassignment, symmetry problems and guest disorder, which are common problems in crystallographic analysis. However, the incorrect structures could be easily corrected using only the mass spectrometric data (molecular weight information)."

Inokuma, Y.; Yoshioka, S.; Ariyoshi, J.; Arai, T.; Hitora, Y.; Takada, K.; Matsunaga, S.; Rissanen, K.; Fujita, M. Nature **2013**, 495, 461.

santonin

Fujita, *Nature* **2013**: use of similar Znl₂ framework to solve organic structures

What about non-aromatic compounds?

- Structure of sanotonin, an anhelminthic drug
- Good enough for absolute stereochemistry
- Heavy atoms exist in host cell
- Original C2/c achiral space group
- Enclathrated crystal became P2₁ chiral space group
- Flack(x) = 0.092(18)

- C3 and C26 stereochemistry was already known
- Spectroscopic methods unable to determine CI4 stereochemistry
- Structure 50% solved occupancy (remaining was disordered or solvent)
- Data only converged on 14S form, not the 14R form (later corrected)

Inokuma, Y.; Yoshioka, S.; Ariyoshi, J.; Arai, T.; Hitora, Y.; Takada, K.; Matsunaga, S.; Rissanen, K.; Fujita, M. *Nature* **2013**, 495, 461. Correction: *Nature* **2013**, *501*, 262.

Buchwald, Angew. Chem. Int. Ed. 2014: reassigned reagent structure

• Structural reassignment of benziodoxole reagent used in electrophilic trifluorothiomethylation reactions

Baran/Blackmond, Angew. Chem. Int. Ed. 2014: obtained structures of reaction products

- Reported electrochemical C-H trifluoromethylation
- Possible constitutional isomers determined by X-ray analysis
- Crystalline sponge method used for amorphous solids, volatile solids, and oils
- Less than 2 mg needed for each structure

Vinogradova, E.V.; Müller, P.; Buchwald, S. L. *Angew. Chem. Int. Ed.* **2014**, 53, 3125; O'Brien, A.; Maruyama, A.; Inokuma, Y.; Fujita, M.; Baran, P. S.; Blackmond, D. G. *Angew. Chem. Int. Ed.* **2014**, *53*, 11868.

Concluding Thoughts

Where has X-ray crystallography taken organic chemistry?

"In the case of those complex structures on the edge of the ever growing field of chemistry, we can now state with some confidence that we know how to use the X-ray method to solve unknown structures containing up to 100 atoms or more in the molecule. This can often be done more quickly and always far more precisely than by the classical methods of organic chemistry. This accomplishment, however, now raises a very serious problem for the immediate future. In the past many of the great discoveries of organic chemistry have been made in the course of the long and patient investigations that are required in the elucidation of natural product structures. While solving a structure the chemist does far more than merely find the relative positions of the atoms in space. He makes many discoveries and learns a lot of chemistry, which can often be utilized, for example, in effecting a total synthesis of the compound out of its elements...Perhaps we solve some problems only to create others. In the long run, however, it is quite certain that a tremendous advance has now been made, and that in another ten years' time organic chemistry will be a very different subject from what it is today."

– John Monteath Robertson (1962)

New York Times (1912)

Concluding Thoughts

"But it is worth while to point out here that the establishment of the structure of strychnine was accompanied by no surcease of interesting chemical developments...This short history should give pause to those whose talent for despair is lavished upon an organic chemistry ornamented and supplemented—or as they fancy, burdened—by magnificent new tools which permit the establishment in days or weeks of enlightenments which once would have required months or years. While it is undeniable that organic chemistry will be deprived of one special and highly satisfying kind of opportunity for the exercise of intellectual *élan* and experimental skill when the tradition of purely chemical structure elucidation declines, it is true too that the not

infrequent dross of such investigation will also be shed; nor is there any reason to suppose that the challenge for the hand and intellect must be less, or the fruits less tantalizing, when chemistry *begins* at the advanced vantage point of an established structure. Of course, men make much use of excuses for activities which lead to discovery, and the lure of unknown structures has in the past yielded a huge dividend of unsought fact, which has been of major importance in building organic chemistry as a science. Should a surrogate now be needed, we do not hesitate to advocate for the case of synthesis."

– R. B. Woodward (1963)

Additional Resources

Ooi, L. Principles of X-ray Crystallography 2010. (textbook for undergraduates, very understandable to read)

Thompson, A. L.; Watkins, D. J. X-ray crystallography and chirality: understanding the limitations *Tetrahedron:Asymmetry* 2009, 20, 712.

Online step-by-step resources on structure solution:

http://scs.illinois.edu/x-ray/software2/xshellguide.pdf http://xray.chem.wisc.edu/Resources/Manuals/Ilia_Guzei_notes_on_OLEX2.pdf http://imserc.northwestern.edu/crystallography-resources.html

Shelxl website: http://shelx.uni-goettingen.de/

Acknowledgments

A big thank you to Mike Takase and Larry Henling for their time and patience teaching me things and answering my questions.

Structure contributions: Sean Feng, Elliot Farney, Arthur Han, Nathaniel Kadunce, Chen Xu **And others**: Jorden Beck, Lauren Chapman, Kangway Chuang, Kelsey Poremba, Alice Wong

Additional Website Resources

http://oldwww.iucr.org/iucr-top/comm/cteach/pamphlets/13/node1.html

https://www.acs.org/content/dam/acsorg/events/popular-chemsitry/Slides/2014-05-15crystallography.pdf

https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4595

https://decor.cst.temple.edu/FS05.pdf

http://www.cdifx.univ-rennes1.fr/RECIPROCS/ANF2014/pdf/Bruker_SC-XRD_FISDIV_Space_Group_Determination_Structure_Solution.pdf

https://www.iucr.org/gallery/1947/caltech

http://www.chem.ucla.edu/~harding/ec_tutorials/tutorial73.pdf

https://www.acs.org/content/dam/acsorg/membership/acs/benefits/extrainsights/crystallography.pdf

http://www.cryst.chem.uu.nl/spek/platon/pl000606.html

http://shelx.uni-ac.gwdg.de/~athorn/2011.html

https://www2.chemistry.msu.edu/facilities/crystallography/xtalgrow.pdf