Recent Advances in Radical Mediated Csp³–H Bond Fluorination

Stoltz/Reisman Literature Meeting Zainab Al Saihati November 17, 2017

Outline

- Properties & Importance of Fluorine Containing Compounds
- *C*–*H* Activation and Fluorination Challenges
- Overview of Organic Compounds Fluorination
- Recent Advances of Radical Mediated C–H Fluorination
 - Metal-Catalyzed C–H Fluorination
 - Metal-Free Catalyzed C–H Fluorination

Properties & Importance of Fluorine Containing Compounds

Diederich, *Science*, **2007**, 317, 1881. Meanwell, *J. Med. Chem.*, **2015**, 58, 8315–8359.

Challenges of C–H Alkanes Activation

- Alkanes are relatively inert
- C–H alkanes have high BDE ~ 90 100 kcal/mol.

Perutz, *Chem Rev* **1996**, 96, 3125—3146. Rayner, *JACS* **1990**, 112, 2530–2536. Zhen, *JACS* **2000**, 122, 6783–6784. Jones, *JACS* **2001**, 123, 7257–7270. Luo Y–R. *Handbook of Bond Dissociation Energies in Organic Compounds*. CRC Press, Boca Raton.

Challenges of C–H Fluorination

- C–F bond formation is a challenging:
 - due to fluorine's high electronegativity
 - the high hydration energy of fluoride anion

 In nature, haloperoxidase enzymes give rise to thousands of organochlorides and organobromides, but no fluoroperoxidase enzyme has been identified.

- Other Challenges Include:
 - Lack of solubility of alkali metal fluorides in organic solvents
 - Dearth of metal catalysts for selective C-F coupling reactions
 - Slow rate of most fluorination methods

Overview of Modern Organic Compounds Fluorination

Recent Advances in Metal-Catalyzed Radical Mediated C–H Fluorination

simple alkankes, amides, ester, teriary alkohol, terpenoids, ketones,sterioids

Groves, Science 2012, 337, 1322–1325.

Groves, Science 2012, 337, 1322–1325.

[a] 10 mol% KI. [b] 1.2 equiv KI. [c] No KI.

[a] 10 mol% KI. [b] 1.2 equiv KI. [c] No KI.

[a] 10 mol% KI. [b] 1.2 equiv KI. [c] No KI.

Lectka, ACIE **2012**, 51, 10580—10583. Lectka, JACS **2014**, 136, 9780–9791.

Lectka, *ACIE* **2012**, 51, 10580–10583. Lectka, *JACS* **2014**, 136, 9780–9791.

Iron Catalyzed Benzylic C–H Fluorination

Premilinary Evidence of Radical Involved Fluorination

Lectka, J. Org. Chem. 2013, 78, 11082–11086.

Decatungstate Anion Catalyzed C-H Fluorination under Photo-irradiation

Britton, ACIE 2014, 53, 4690-4693.

Decatungstate Anion Catalyzed C–H Fluorination under Photo–irradiation

4(Bu₄N⁺)

Decatungstate Anion Catalyzed C-H Fluorination under Photo-irradiation

Britton, ACIE 2014, 53, 4690–4693.

Decatungstate Anion Catalyzed C–H Fluorination under Photo–irradiation

Fluorination of Natural Product Sclareolide

Britton, ACIE 2014, 53, 4690–4693.

Decatungstate Anion Catalyzed C–H Fluorination under Photo–irradiation Proposed Mechanism

Silver–Catalyzed Oxidative Benzylic C–H Bonds Difluorination of Arenes

Tang, ACIE 2014, 53, 5955-5958.

Silver–Catalyzed Benzylic C–H Bonds Difluorination of Arenes Proposed Mechanism

$$Ag^{l} + S_2O_8^{2-} \longrightarrow Ag^{l} + SO_4^{2-} + SO_4^{--}$$

 $Ag^{I} + SO_{4}^{-} \rightarrow Ag^{II} + SO_{4}^{2-}$

Transition–Metal Free Oxidative Aliphatic C–H Fluorination

Tang, Org Chem Front 2015, 2, 806–810.

Transition–Metal Free Oxidative Aliphatic C–H Fluorination

Late Stage Fluorination of Complex Molecules

Tang, Org Chem Front **2015**, 2, 806–810.

Transition–Metal Free Oxidative Aliphatic C–H Fluorination

Kinetic Deuterium Isotope Effect

Proposed Mechanism

Tang, Org Chem Front 2015, 2, 806–810.

Vanadium–Catalyzed Fluorination of C–H Bonds

Chen, Org Chem Front 2014, 1, 468–472.

KIE Study of Vanadium–Catalyzed Fluorination of Aliphatic C–H Bonds

Kinetic Deuterium Isotope Effect

Chen, Org Chem Front 2014, 1, 468–472.

Uranyl Nitrate Catalyzed C–H Fluorination Under Visible Light Irradiation

Silver Catalyzed Fluorination of C–H Bonds Using Unprotected Amino Acids

Baxter, Org Lett 2017, 19, 2949–2952.

Silver Catalyzed Fluorination of C–H Bonds Using Unprotected Amino Acids

Mechanistic Studies

Two Mechanistic Scenarios for Ag(I) Oxidation

Baxter, Org Lett 2017, 19, 2949–2952.

Silver Catalyzed Fluorination of C–H Bonds Using Unprotected Amino Acids

Baxter, Org Lett 2017, 19, 2949–2952.

Recent Advances in Non-Metal Catalyzed Radical Mediated C–H Fluorination

Metal–Free C–H Fluorination Using N–Oxyl Radical

Metal–Free C–H Fluorination Using N–Oxyl Radical

Inoue, Org Lett. 2013, 15, 2160–2163.

Photocatalyzed Metal–Free Benzylic C–H Fluorination

Chen, JACS 2013, 135, 17494–17500.

Photocatalyzed Metal–Free Benzylic C–H Monofluorination

Chen, *JACS* **2013**, 135, 17494–17500.

Photocatalyzed Metal–Free Bencylic C–H gem–Difluorination

Chen, *JACS* **2013**, 135, 17494–17500.

Photocatalyzed Metal–Free Benzylic C–H Fluorination Proposed Mechanism

Photocatalyzed Metal–Free Aliphatic C–H Fluorination

Chen, Chem Commun 2014, 50, 11701–11704.

Triethylborane–Initiated Radical C–H Fluorination Proposed Mechanism

Lectka, J. Org. Chem. 2014, 79, 8895-8899.

Tetracyanibenzene Catalyzed Fluorination of Aliphatic C–H Bonds

Lecktka, Chem Sci 2014, 5, 1175–1178.

Hypothesized Mechanism of Tetracyanibenzene Catalyzed Fluorination of Aliphatic C–H Bonds

Lecktka, Chem Sci 2014, 5, 1175–1178.

Tetracyanibenzene Catalyzed Fluorination of Benzylic C–H Bonds

Lectka, Org Lett 2014, 216, 6339–6341.

Summary

- Presented the different systems and associated mechanisms of C–H Fluorination
- Monofluorination vs. Difluorination
- Compatibility with various functional groups:
 - Aldehydes
 - Esters
 - Tertiary alcohols
 - Halogens
 - Amines
 - Carboxylic acids

