Introduction to Flow Chemistry

Eric Alexy Literature Meeting December 14th, 2018

Introduction to Flow Chemistry

Eric Alexy Literature Meeting December 14th, 2018

Overview

- I. flow chemistry basics and common techniques
 - types of reactors
 - continuous extraction and other purification methods

II. selected examples of flow synthetic methodology

III. application of flow chemistry toward API/natural product synthesis

- one-step processes
- multi-step continuous processes

Overview

Overview

Batch vs. Flow

key advantages of flow
optimal heat transfer due to high surface area
accelerated mixing/micromixing
easy use of high pressure: heating solvents above their boiling point
continuous setup requires minimal intervention once initiated
increased performance of multiphasic reactions

Plutschack, Pieber, Gilmore, Seeberger Chem. Rev. 2017, 117, 11796–11893.

Batch vs. Flow

key advantages of flow
optimal heat transfer due to high surface area
-accelerated mixing/micromixing
-easy use of high pressure: heating solvents above their boiling point
-continuous setup requires minimal intervention once initiated
-increased performance of multiphasic reactions

both involve the same fundamental operations

Plutschack, Pieber, Gilmore, Seeberger Chem. Rev. 2017, 117, 11796–11893.

Batch vs. Flow

key advantages of flow
-optimal heat trans
-accelerated mixin
-easy use of high p
-continuous setup
'A machine-assisted approach gives people more
time to think plan, and make discoveries.''
-Steve Ley

-increased performance of multiphasic reactions

both involve the same fundamental operations

Plutschack, Pieber, Gilmore, Seeberger Chem. Rev. 2017, 117, 11796–11893.

Liquid–Liquid Extraction

Hu, O'Brien, Ley *Org. Lett.* **2012**, *14*, 4246–4249. Ley, Fitzpatrick, Ingham, Myers *Angew. Chem., Int. Ed.* **2015**, *54*, 3449–3464.

In-Line Solvent Removal/Swap

Ley, Fitzpatrick, Ingham, Myers *Angew. Chem., Int. Ed* **2015**, *54*, 3449–3464. Cvetkovic, Lade, Marra, Arima, Rinaldi, Dittrich RSC Adv. **2012**, *2*, 11117–11122.

Seeberger, Angew. Chem., Int. Ed. 2012, 51, 7028–7030.

Microwave-to-Flow Paradigm

-paradigm states that reactions optimized in MW conditions easily translate to flow

Jensen, Jamison, *Org. Process Res. Dev.* **2010**, *14*, 432–440. Kappe, *Angew. Chem. Int., Ed.* **2010**, *49*, 7101–7105. Kappe, *Chem. Eur. J.* **2011**, *17*, 11956–11968.

Ley, Angew. Chem., Int. Ed 2015, 54, 144–148.

Ley, Angew. Chem., Int. Ed 2015, 54, 144–148.

Ley, Angew. Chem., Int. Ed 2015, 54, 144–148.

Packed-Bed Reactor

entry	Pd Source (1 mol %)	Base	Solvent	Yield
1	Pd(dba) ₂	KHMDS	THF/Tol	<5
2	Pd(dba) ₂	LIMHDS	THF/Tol	12
3	2	LiHMDS	THF/Tol	5
4	2	2.0 M KOH *with TBAB	Tol/H ₂ O	91

OMe

=0

Ме

Buchwald, Angew. Chem., Int. Ed. 2011, 50, 6396-6400.

Packed-Bed Reactor

rapid/efficient mixing is crucial for high yields!

Buchwald, Angew. Chem., Int. Ed. 2011, 50, 6396-6400.

Buchwald, Angew. Chem., Int. Ed. 2011, 50, 6396–6400.

Rapid Vortex Fluidics

Raston, Chem. Eur. J. 2015, 21, 10660–10665.

Raston, Chem. Eur. J. 2015, 21, 10660–10665.

Raston, Chem. Eur. J. 2015, 21, 10660-10665.

Copper-Tube Reactor

Sach, Adv. Synth. Catal. 2009, 351, 849-854.

Copper-Tube Reactor

30 different triazoles prepared in a couple hours

Jamison, Patel, Minolfi Org. Lett. 2011, 13, 280-283.

Cross-Coupling in Flow

Uozumi, J. Am. Chem. Soc. 2006, 128, 15994-15995.

Cross-Coupling in Flow

Uozumi, J. Am. Chem. Soc. 2006, 128, 15994–15995.

Cross-Coupling in Flow: Synthesis of Imatinib

Cross-Coupling in Flow: Synthesis of Imatinib

Ley, Chem. Commun. 2010, 46, 2450-2452.

Continuous Flow Hydrogenation (H-Cube)

Boscalid, a funicide made on >1000 tons/year

Kappe, Adv. Synth. Catal. 2010, 352, 3089–3097.

Continuous Flow Hydrogenation (H-Cube)

ThalesNano X-Cube

Kappe, Adv. Synth. Catal. 2010, 352, 3089–3097.

Gas-Liquid Transformations with Tube-in-Tube Reactor

-CO₂ carboxylation of Grignards
-CO methoxycarboxylation
-Me₂NH/CO dimethylaminocarbonylation
-ethylene Heck-vinylation
-CO/H₂ hydroformylation
-NH₃ Paal-Knorr
-O₂ Wacker Oxidation

Ley, Acc. Chem. Res. 2015, 48, 349-362.

Taming Hazardous Reagents Using Flow

Kappe, Org. Lett. 2013, 15, 5590-5593.

Taming Hazardous Reagents Using Flow

Ley, Stevens, Chem. Soc. Rev. 2016, 45, 4892–4928.
Generation/Reaction of Arynes in Flow

-increased mass/heat transfer in flow allows for highly reactive intermediates to react with higher selectivity

Herestsch, Christman Org. Lett. 2018, 20, 7611-7664.

Generation/Reaction of Arynes in Flow

-increased mass/heat transfer in flow allows for highly reactive intermediates to react with higher selectivity

Herestsch, Christman, Org. Lett. 2018, 20, 7611-7664.

Figure 1. The percent transmittance versus distance from the wall (d) as calculated from the Beer-Lambert law. \bullet 0.5 mM [Ru(dmb)₃]²⁺, \blacktriangle 1 mM [Ru(dmb)₃]²⁺, \blacksquare 2 mM [Ru(dmb)₃]²⁺.

Gagne, Angew. Chem. Int., Ed. 2012, 51, 4140-4143.

Gagne, Angew. Chem. Int., Ed. 2012, 51, 4140-4143.

Gagne, Angew. Chem. Int., Ed. 2012, 51, 4140-4143.

Flow Photochemistry

Batch: 1.5 h, 88% yield Flow: 1 min, 73% yield

Batch: 2.5 h, 41% yield Flow: 30 min, 59% yield

Batch: 1 h, 91% yield Flow: 1 min, 91% yield

Noel, Chem. Sci. 2014, 5, 4768–4773.

Flow Photochemistry

-segmented gas-liquid flow -flow requires only 1.1 equiv of CF₃I (batch uses 4 equiv)

spirangien A methyl ester (R = Me)

spirodienal A

Ley, Angew. Chem. Int., Ed. 2014, 53, 4915-4920.

Continuous Flow Synthesis of Ibuprofen

McQuade, Angew. Chem. Int., Ed. 2009, 48, 8547-8550.

Continuous Flow Synthesis of Ibuprofen

McQuade, Angew. Chem. Int., Ed. 2009, 48, 8547-8550.

Continuous Flow Synthesis of Ibuprofen

-initial Friedel-Crafts performed neat

- -total 3 min of retention time
- -ICI is heated and pumped in neat, as solutions of ICI slowly decompose
- -total size of reactor setup is approximately half a fume hood

Jamison, Angew. Chem. Int., Ed. 2015, 54, 983-987.

Continuous Flow Synthesis of Rolipram

PS = polymer supported DMPSi-C = dimethylpolysilane

Kobayashi, Nature 2015, 520, 329-332.

Continuous Flow Synthesis of Rolipram

Kobayashi, Nature 2015, 520, 329-332.

Jamison, Jensen, Myerson, Science 2016, 352, 61-67.

Et

Me

HN

Et

•HCI

Jamison, Jensen, Myerson, Science 2016, 352, 61-67.

(Valium)

Jamison, Jensen, Myerson, Science 2016, 352, 61-67.

Jamison, Jensen, Myerson, Science 2016, 352, 61-67.

Jensen, Jamison, Science 2018, 361, 1220-1225.

also applied to: HWE olefination, reductive amination, Suzuki-Miyaura coupling, S_NAr, photoredox cyanation, ketene-alkene [2+2]

Jensen, Jamison, Science 2018, 361, 1220-1225.

-segmented flow -run through ~1500 reaction combinations over 24 hours -optimization scale is 0.05 mg each reaction

Perera, Richardson, Sach, Science 2018, 359, 429-434.

Perera, Richardson, Sach, Science 2018, 359, 429-434.