Organocatalysis Enabled by N-Heterocyclic Carbenes

Jiaming Li 2018/04/27

Stability of N-heterocyclic Carbenes

 σ -electron-withdrawing substitutents

 σ -electron-donating substitutents

- σ -electron withdrawing substitutents favor the singlet state over the triplet state
- σ -electron withdrawing substitutents inductively stablize the σ non-bonding orbital by increasing its s character and leaving the p_{π} orbital unchanged
- σ -electron donating substitutents induce a smaller σ -p_{π} gap, favoring a triplet state

Stability of N-heterocyclic Carbenes

- The energy of p_{π} orbital is increased by the interaction with the symmetric combination of the substitutent lone pairs.
- Combined effect is to increase the σ -p_{π} gap and stablize the singlet-state carbene over the more reactive triplet-state carbene.

Overview

Azolium enolate · Cycloaddition

Benzoin condensation

NaCN Ph Ph Ph н OH 0 Ο Ph CN-Ph Ph Н ÔН CN HO HO н _он HO Ph Ph Ph OH ОН О Ph H₂O '≈_N -Ph н

• First reported benzoin condensation (Wohler, Liebig, 1832)

Benzoin condensation

Ugai discovered thiazolium salts could catalyze benzoin condensation (1943)

Co-enzyme thiamine diphosphate is responsible for the generation of acyl anion

Ugai, T.; Tanaka, R.; Dokawa, T. J. Pharm. Soc. Jpn. 1943, 63, 296.

Proposed Mechanism by Breslow

Breslow, R. J. Am. Chem. Soc.. 1958, 80, 3719

• First asymmetric benzoin condensation catalyzed by chiral thiazolium salts (Sheehan, 1966)

Enders, 2002

Model

Enders, Chem. Rev. 2007, 107, 5606-5655

Connon, S. J. J. Org. Chem. 2009, 74, 9214

Aldehyde-Ketone Cross-Benzoin Reaction

Aldehyde-Imine Cross-Benzoin Reaction

Acyl Anion Equivalent

Acyl Anion Equivalent

Seminal Works of Stetter Reaction

• First general intramolecular Stetter reaction catalyzed by NHC (Ciganek, 1995)

• First asymmetric intramolecular Stetter reaction (Enders, 1995)

Ciganek, *Synthesis* **1995**, 1311-1314 Enders, *Angew. Chem., Int. Ed.* **1995**, 34, 1021-1023

Improved Asymmetric Intramolecular Stetter Reaction

Highly enantioselective Stetter reaction (Rovis, 2002)

Rovis, J. Am. Chem. Soc. 2002, 124, 10298

Asymmetric Intermolecular Stetter Reaction

Intermolecular Stetter reaction with Chalcones (Enders, 2008)

Intermolecular Stetter reaction with highly activated alkylidene dicarbonyls (Rovis, 2008)

Rovis, T. J. Am. Chem. Soc. 2008, 130, 14066

Asymmetric Intermolecular Stetter Reaction

One-Pot Synthesis of Pyrrols and Furans

Müller, T. J. J. *Org. Lett.* **2001**, 3, 3297 Scheidt, K. A. *Org. Lett.* **2004**, 6, 2465 Acyl Anion Equivalent

First hydroacylation precedent (She, 2008)

• First hydroacylation precedent (She, 2008)

• First hydroacylation precedent (She, 2008)

Asymmetric intramolecular hydroacylation (Glorius, 2011)

Glorius, F. *Angew. Chem. Int. Ed.* **2011**, 50, 4983 She, X. *Tetrahedron* **2008**, 64, 8797

Hydroacylation Mechanism

•Concerted but highly asynchronous transition state (Glorius, Grimme)

Glorius, F. *J. Am. Chem. Soc.* **2009**, 131, 14190. Glorius, F. *Angew. Chem. Int. Ed.* **2011**, 50, 4983

Intermolecular Hydroacylation

Umpolung of Michael Acceptor

Heck-type cyclization (Fu, 2006):

Overview

Azolium enolate · Cycloaddition

Generation of Homoenolate

Annulation Reactions

Cyclopentene Synthesis

• 1,3,4-trisubstituted Cyclopropene Synthesis by NHC (Nair, 2006)

Nair, J. Am. Chem. Soc. 2006, 128, 8736-8737.

Cyclopentene Synthesis

Enantioselective Synthesis Cyclopropene by NHC (Bode, 2007)

Bode, J. Am. Chem. Soc. 2007, 129, 3520-3521

Mechanism

Mechanism

Origin of *cis/trans* stereoselectivity

β-lactam Formation

• Scope of β -lactam formation

Bode, J. Am. Chem. Soc. 2008, 130, 418-419

Aza-Benzoin-Oxy-Cope Rearrangement Mechanism

Overview

Azolium enolate · Cycloaddition

Biomimetic Origin of Acylazolium Reactivity

Clavulanic acid biosynthesis through acylazolium intermediate

Townsend, J. Am. Chem. Soc. 1999, 121, 9223-9224

Generation of Acylazolium

• Genertion of acylazolium intermediate by MnO₂ oxidation (Scheidt, 2007)

Scheidt, Org. Lett., 2007, 9, 371-374

Generation of Acylazolium

• Genertion of acylazolium intermediate by MnO₂ oxidation (Scheidt, 2007)

Scheidt, Org. Lett., 2007, 9, 371-374

Generation of Acylazolium

Dihydropyranone Synthesis Through Acylazolium

Intramolecular Rearrangement

Lupton, J. Am. Chem. Soc. 2009, 131, 14176-14177

Mechanism

Enantioselective Coates-Claisen Rearrangement

Catalytic, Enantioselective Couplings with Kojic Acids (Bode, 2010)

Bode, J. Am. Chem. Soc. 2010, 132, 8810-8812

Mechanistic Dichotomy

Mayr, *Angew. Chem., Int. Ed.* **2012**, 51, 5234-5238 Schoenebeck, *Chem. Sci.* **2012**, 3, 2346-2350.

Enantioselective Hetero-Diels-Alder Reaction

Bode, J. Am. Chem. Soc. 2006, 128, 8418-8420

Enantioselective Hetero-Diels-Alder Reaction

Ketene Cycloaddition

Ketene Cycloaddition

Overview

Azolium enolate · Cycloaddition

Transesterification

Kinetic Resolution of Secondary Alcohols

Asymmetric Conjugate Addition of 1,3-Dicarbonyls

• NHC as non-covalent chiral templates (Huang, 2014)

Huang, Nat. Commun. 2014, 5, 3437

Overview

Azolium enolate · Cycloaddition

•Synthesis of (+)-sappanone B

reaction type:

Suzuki, Org. Lett. 2007, 9, 2713-2716

Roth, Tetrahedron Lett. 1992, 33, 2283-2284

Scheidt, Angew. Chem. Int. Ed. 2012, 51, 4963-4967

Candish, Lupton, Org. Lett. 2010, 12, 4836-4839.

Hong, Angew. Chem. Int. Ed. 2012, 51, 5735-5738.

Reviews

- 1. N-Heterocyclic Carbenes as Organocatalysts Nolan, *Angew. Chem. Int. Ed.* 2007, *46*, 2988 – 3000
- 2. Organocatalysis by N-Heterocyclic Carbenes Enders, *Chem. Rev.* 2007, *107*, 5606-5655
- 3. A Continuum of Progress: Applications of N-Hetereocyclic Carbene Catalysis in Total Synthesis

Sheidt, Angew. Chem. Int. Ed. 2012, 51, 11686 – 11698

4. Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes

Rovis, Chem. Rev. 2015, 115, 9307–9387